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Senescent cells contribute to pathology and dysfunction in
animal models'. Their sparse distribution and heterogenous
phenotype have presented challenges to their detection
in human tissues. We developed a senescence eigengene
approach to identify these rare cells within large, diverse
populations of postmortem human brain cells. Eigengenes are
useful when no single gene reliably captures a phenotype, for
example, senescence; they also help to reduce noise, which is
important in large transcriptomic datasets where subtle sig-
nals from low-expressing genes can be lost. Each of our eigen-
genes detected around 2% senescent cells from a population
of around 140,000 single nuclei derived from 76 postmor-
tem human brains with various levels of Alzheimer's disease
(AD) pathology. More than 97% of the senescent cells were
excitatory neurons and overlapped with tau-containing neu-
rofibrillary tangles (NFTs). Cyclin-dependent kinase inhibi-
tor 2D (CDKN2D/p19) was predicted as the most significant
contributor to the primary senescence eigengene. RNAscope
and immunofluorescence confirmed its elevated expression
in AD brain tissue, whereby p19-expressing neurons had 1.8-
fold larger nuclei and significantly more cells with lipofus-
cin than p19-negative neurons. These hallmark senescence
phenotypes were further elevated in the presence of NFTs.
Collectively, CDKN2D/p19-expressing neurons with NFTs rep-
resent a unique cellular population in human AD with a senes-
cence phenotype. The eigengenes developed may be useful in
future senescence profiling studies as they identified senes-
cent cells accurately in snRNA-Seq datasets and predicted
biomarkers for histological investigation.

Cellular senescence is a complex stress response that culminates
as a change in cell fate. Senescent cells are cell cycle arrested and
resistant to apoptosis'. Their survival contributes to long-term health
decline as, notoriously, they secrete a molecular milieu, referred to as

senescence-associated secretory phenotype (SASP), that negatively
impacts their extracellular environment’. Data from rodent models
indicate that senescent neurons’*, astrocytes’, microglia® and oli-
godendrocyte precursor cells’ contribute to neurodegeneration and
cognitive dysfunction. Information on the relative proportion of
senescent cells in humans has been restricted to accessible tissues
(~2-5% in skin, adipose and blood'*""). Identifying senescent cells
in human AD presents challenges beyond their low abundance and
the inability to routinely biopsy brain tissue. For example, in-vitro-
based molecular profiles and senescence assays generate inconsis-
tent results when applied to the brain, p16 and/or p21 senescence
marker genes signify aberrant neuronal cycle activity and are upreg-
ulated during cell differentiation and glial activation independent of
senescence'’", and brain cells secrete molecules that overlap with
SASP factors in the absence of a cell cycle arrest (that is, glial cells
become hyperproliferative and inflammatory in many neurode-
generative diseases'>'®). To overcome these obstacles, we developed

. . . . . . . Q!
unbiased bioinformatic tools—senescence eigengenes—to 1dent1fy ]

and profile senescent cells in human AD:

We created three eigengenes representing distinct features of
senescence—stress response, cell cycle arrest and inflammatory
response—to minimize the likelihood of mistaking cells with one,
but not all, key senescent phenotypes. Thus, senescent cells could be
distinguished from those that may be cell cycle arrested, stressed or
inflammatory, independent of senescence. Each eigengene included
genes commonly associated with senescence that had been reported
across cell and tissue types, including those from aged and trans-
genic mouse models of AD pathology’”. The gene sets reflected
(1) a canonical senescence pathway (CSP) with 22 genes including
CDKN2A and CDKNIA that are upregulated in many senescent
cell types; (2) 48 genes upregulated early in senescence, which we
termed senescence initiating pathway (SIP) and (3) 44 genes upregu-
lated after the stable arrest and involved in SASP production, which
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we termed senescence response pathway (SRP) (Supplementary
Table 1). For each of these three gene sets, we performed a principal
component analysis to compute a weighted average expression over
all genes in the corresponding list", that is, an eigengene'®. Weights
were optimized in such a way that explained variance was maxi-
mized and, thus, the loss of biological information is expected to
be minimal. Cells were considered to be senescent if their level of
eigengene expression was more than the mean expression over all
cells plus three times the s.d. (mean+3s.d.).

Two independent single-nucleus RNA sequencing (snRNA-Seq)
datasets were used'>”, referred to as cohort 1 and cohort 2, respec-
tively. Analyses using the CSP eigengene revealed 1,526 senescent
cells in the dorsolateral prefrontal cortex (2.1%) from cohort 1; the
proportion differed across individuals (0-13%, Fig. 1a-g). A total of
1,351 cells and 1,256 cells expressed the SIP and SRP, respectively
(2% and 1.7%, Fig. 1a—c). Similar results were derived from cohort
2, whereby 1,331 (2.3%), 1,485 (2.6%) and 951 (1.6%) cells expressed
the CSP, SIP and SRP eigengenes, respectively (Supplementary
Fig. 1 and Supplementary Table 2). We used a dataset generated
from embryonic brains as a control’’; notably, the eigengenes iden-
tified few senescent cells (CSP: 16 (0.4%); SIP: 23 (0.6%); SRP: 82
(2%), Extended Data Fig. 1).

To determine which brain cell type(s) were overrepresented in the
senescent cell population, we used a hypergeometric test to catego-
rize the overlap with cell types, as defined in the original studies'**.
In cohort 1, excitatory neurons were the only cell population with
more than expected senescent cells based on all three senescence
gene sets (Fig. 1d-g). Subpopulations of astrocytes, endothelial cells
and pericytes expressed gene patterns consistent with inflamma-
tion (SRP) but not with canonical senescence. Cohort 2 produced
similar results, where the number of cells expressing CSP and SIP
eigengenes were overrepresented in excitatory neurons. Astrocytes
and endothelial cells were identified to express the SRP eigengene,
which may reflect an inflammatory phenotype independent of a
canonical senescence stress response’” (Extended Data Fig. 2).
Endothelial cells were also identified based on the CSP eigengene,
but only in cohort 2. These data may indicate vascular cell senes-
cence in the brain, as seen in cardiovascular disease’, and recently
reported in human AD?. Similarly, in the embryonic dataset, the
higher expression of SRP reflected endothelial cells, 77 (49%).
However, they did not express either the CSP or SIP eigengenes,
indicating an incomplete senescence profile that may reflect physio-
logical senescence or developmental processes associated with these
molecules*°. Excluding endothelial cells, the number of identified
senescent cells in the embryonic brains was significantly fewer than
the rate of around 2% in cohorts 1 and 2 (-log,, P values from bino-
mial tests: 16 for CSP, 12 for SIP and 26 for SRP). Collectively, the
predominant senescent cell population in both adult brain cohorts
was excitatory neurons, representing 97% and 92% of CSP cells in
cohort 1 and cohort 2, respectively. Even in the dataset of Grubman
et al.”, in which neurons were undersampled due to use of single-
cell (sc) profiling (that is, only 656 (5%) neurons were sequenced),
neurons had the highest rate, and the most significant P value, of
CSP senescent enrichment (Supplementary Fig. 2).:

The relative proportion of senescent excitatory neurons to
total excitatory neurons within individual brains varied among
individuals and ranged from 0% to 20%. On average, 4.2%, 3.5%
and 2.5% excitatory neurons in cohort 1 were senescent as deter-
mined using the CSP, SIP and SRP eigengenes, respectively (-log,,
P value: 3,143, 2,027 and 380, respectively, Fig. 1h-j); Cohort 2,
Supplementary Fig. 1. Moreover, the senescent cells identified
based on these three eigengenes overlapped significantly (-log,, P
value: >232, Extended Data Fig. 3). There was no significant asso-
ciation between the number of excitatory neurons expressing CSP,
SIP and SRP eigengenes with sex (P values: >0.7, >0.7 and >0.6,
respectively) or age (P values: >0.5, >0.2 and >0.3, respectively). In
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relation to cohort 1, brains from cohort 2 had similar senescent cell
burden and between-subject variability (Supplementary Fig. 1) but
a higher proportion of excitatory neurons expressing CSP and SIP
(9.7% and 10.3%, respectively) with <1% expressing SRP (-log,, P
values: 4,820, 4,663 and 0, respectively; Extended Data Fig. 2 and
Supplementary Fig. 3).

As described above, the three CSP, SIP and SRP eigengenes were
designed to capture distinct aspects of senescence that we reasoned
would be associated in senescent cells, but not necessarily associ-
ated in nonsenescent cells. To test this hypothesis, we evaluated the
correlation among the three senescence eigengenes within excit-
atory neurons. The ratio of senescent excitatory neurons, as defined
by CSP, correlated highly with SIP (Pearson correlation: 0.96) and
SRP (0.90). Moreover, brains with higher proportions of senescent
neurons displayed higher eigengene expression levels (Fig. 1k).
Pathways were similarly correlated in cohort 2 (CSP and SIP: 0.94,
Supplementary Fig. 3). Thus, the eigengenes were significantly asso-
ciated, and excitatory neurons represented the predominant senes-
cent cell type across the ~140,000 cells analyzed in these 76 brains
as determined by three independent eigengenes (that is, signatures)
of senescence.

To confirm that these results were not an artifact of our gene
lists, we computed an eigengene for senescence per each of the
gene lists obtained from CellAge®, Gene Ontology (GO)**" and
Kyoto Encyclopedia of Genes and Genomes (KEGG)’' databases
(Supplementary Table 1). These eigengenes showed that 3.5%, 3.7%
and 3.4% excitatory neurons in cohort 1 were senescent, respec-
tively, which is significantly more than expected by chance (-log,,
P value: 2,534, 2,673 and 2,277, respectively; Extended Data Fig. 4).
Overall, the overlap between the identified senescent cells based
on the six CSP, SIP, SRP, CellAge, GO and KEGG eigengenes was
significantly more than expected by chance (-log,, P value >232;
Extended Data Fig. 5).

The accumulation of intraneuronal tau protein is a common
pathology across neurodegenerative diseases including AD*. NFTs
are characterized histologically by the presence of aggregated, phos-
phorylated misfolded tau proteins. They accumulate preferentially
in excitatory neurons in human AD* and drive senescence in trans-
genic mice*. We hypothesized that excitatory neurons containing
NFTs may be a source of senescent excitatory neurons detected
by the eigengenes. To quantify the association between NFTs and
senescence, we created eigengenes from two independent gene lists
derived from laser capture microdissected neurons with NFTs**,
referred to as NFTPuHey” and ‘NFTS, respectively. Using the NFT
eigengenes, we identified 1,050 NFTP ey cells and 1,022 NFTCerei
cells in cohort 1, reflecting 1.5% and 1.4% of the total cellular popu-
lation, respectively (Fig. 2). The overlap between NFTP**K¢¥ cells and
NFTC cells was significant (that is, 765 (1%) cells, -log,, P value:
3,035). Cohort 2 had slightly higher levels of NFT-bearing neurons
than cohort 1, specifically 1,523 (2.6%) NFTP* and 1,761 (3%)
NFT® < cells with a significant overlap of 1,214 (2%) cells (-log,, P
value: 4,038; Supplementary Fig. 4). As expected, we did not iden-
tify any NFTPunekley or NFT %< cells in the embryonic control brains
(Supplementary Table 2). In both cohorts 1 and 2, and based on
both NFTPukey and NFTC*< eigengenes, the predominant cell type
expressing the NFT eigengenes was excitatory neurons. These data
are consistent with NFTs driving neuronal senescence in transgenic
mice’ and preferential accumulation in excitatory neurons in AD*.

As observed with senescence, the relative proportion of NFT-
containing neurons to all excitatory neurons varied across indi-
viduals in cohort 1 (Fig. 2d,e) and cohort 2 (Supplementary Fig. 5).
Since the cell type (that is, excitatory neurons) and proportions
were consistent with other reports**, we interpreted that the
eigengene could be used as a transcriptional surrogate to identify
NFT-bearing neurons. Plotting NFT eigengene expression against
senescence eigengene expression revealed a significant relationship

NATURE AGING | www.nature.com/nataging


http://www.nature.com/nataging

DispatchDate: 22.11.2021 - ProofNo: 142, p.3

NATURE AGING

LETTERS

a Canonical senescence pathway Senescence initiating pathway c Senescence response pathway
0.15 | 0.15 0.15 -
0.10 0.10 0.10 -
o o i<
© © ©
o o o
0.05 0.05 0.05
0 01 0 1
Canonical senescence pathway Senescence initiators Senescence responses
d e f
0.005 -
0.006 -
0.004 -
Cell type 0.004 -
L ]Ast 5 0.004 - 5 S 0.003 1
L IEnd @ FR. a2
Ex 2 | . ——— I <
o o 2 0.002
In 5 5 0.002 A X3
glll_c 0.002
i
0.001 -
eopec | (0t t 4ttt
O Per
0 ﬂ 0 - 07
Ast End Ex In Mic Oli Opc Per Ast End Ex In Mic Oli Opc Per Ast End Ex In Mic Oli Opc Per
g Cell numbers log,,(P Cell numbers log;o(P Cell numbers log,o(P
Cell types Normal Senescent value) Normal Senescent value) Normal Senescent value)
3,392 3,391

121

9,156

121

9,088

9,079

=

o

w
|

0.2+

0.1+

Senescent excitatory per total

o
w
|

0.2

0.1

Senescent excitatory per total

—

0.34

0.2

0.1+

Senescent excitatory per total

1,919 1 ~0 1,920 0 1,917 3 ~0
18,235 0 0 18,235 0 18,232 3 ~0
2,627 0 2,627 0 2,612

167 0 167 0

=

Senescence excitatory ratio of SIP

Canonical senescence pathway

Senescence initiators

Senescence responses

.
0.101 .
Senescence
e response
: * . 0.025
. * 0.050
0.054 . * 0.075
vl
o e
o=

0 0.025 0.050 0.075 0.100

Senescence excitatory ratio of CSP

Fig. 1| The prominent senescent cell type in the dorsolateral prefrontal cortex were excitatory neurons. a-j, Eigengenes for each gene list using
n=70,634 cells in CSP (a,d,h), SIP (b,e,i) and SRP (c.fj) were computed using principal component analyses. The proportion of cells from each brain
expressing the respective eigengene were plotted (a-c). Cell types (d-f) and counts (g) represented in the senescent cell population discovered in a-c are
shown. A one-sided hypergeometric test was used to report the significant cell types. All the P values were adjusted using Bonferroni correction. The ratio
of senescent excitatory neurons that expressed the respective eigengenes to total neurons within each brain is shown (h-j), n=48 brains. k, Scatter plot
for the ratio of senescent excitatory neurons to the total number of excitatory neurons in cohort 1 with n=48 brains. Each dot represents one brain. The
size of the dots depicts the ratio in SRP. The senescence excitatory ratios of CSP correlated highly with SIP (Pearson correlation: 0.96) and SRP (0.90).
Also, the SIP ratio was correlated positively with the SRP ratio (0.93). The line inside each box plot in a-c and h-j shows the median. The lower and upper
hinges of box plots correspond to the first and the third quartiles, respectively. The whiskers extend from the bottom or the top of the box for, at most, 1.5
of the interquartile range, which is the distance between first and third quartiles. Samples not between the whiskers were considered outliers, which are
shown with yellow (a-¢) and black (h-j) dots. Cell populations: astrocytes (Ast), endothelial cells (End), excitatory neurons (Ex), inhibitory neuron (In),
microglia (Mic), oligodendrocytes (Oli), oligodendrocyte precursor cells (Opc) and pericytes (Per) were classified in the original publicationz‘.:
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Fig. 2 | NFT eigengene expression correlated significantly with senescence expression. a,b, Eigengenes representing NFT expression were calculated
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with a black dot. f, Scatter plot for eigengene values for CSP genes on the x axis versus Dunckley NFT marker genes on the y axis. Each dot represents

one neuron. The red line represents the intercept, and the blue line shows the best linear fit. A linear regression model is fitted on NFT - Senescence with

coefficient being equal to zero as the null hypothesis.:

between them (-log,, P value >15, adjusted R*=0.6803, m=0.863,
Fig. 2f). Hypergeometric tests were used to assess the association
between senescent and NFT-bearing cells. In cohort 1, we identi-
fied 1,485 CSP senescent excitatory neurons and 1,032 NFTPunckler.
bearing excitatory neurons. We expected to identify 44 overlapping
cells if senescence and NFTs were not associated (that is, coex-
pression by chance); however, 598 cells coexpressed both eigen-
genes, indicating a significant association (-log,, adjusted P value
= 1,337; Supplementary Table 3). Similar results were obtained in
cohort 2 and using the NFT%# ejgengene (Supplementary Table 3).
NFTPukey_bearing excitatory neurons also significantly overlapped
with SIP and SRP senescent cells (-log,, P values >231; Extended

Data Fig. 3). These data confirmed the significant association
whereby the senescence and NFT eigengenes were upregulated
within the same cells.

Senescent and NFT neurons constituted a minor proportion of
all neurons (that is, of the 44,172 total neurons analyzed in cohort
1, only 3.4% and 2.3% excitatory neurons met the criteria of senes-
cent and NFTs, respectively). To visualize overlap between senescent
and NFT neuron populations, we plotted their distributions within
the entire neuronal population. These data revealed a continuum
of senescence gene expression whereby 99% of NFT-bearing neu-
rons displayed upregulated senescence eigengene greater than that
of neurons without NFTs (Fig. 3). Specifically, the density plots
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Fig. 3 | Senescent excitatory neurons contain NFTs, and NFT-bearing neurons are senescent. a-c, Plots of total neuron counts (pink) against expression

of the eigengene CSP, SIP or SRP. Cell densities of where NFT-bearing neurons (green) lie within the plot are shown (insets). d-f, Plots of total neuron
counts (pink) against expression of the NFTPu<key gjgengene. Cell densities of where CSP, SRP or SIP cell populations lie within the plot are shown (insets).
Larger plots are scaled by the number of cells and insets are scaled by cell density. Mean and s.d. are calculated for the eigengene value of all neurons.

indicated that <1% of NFT-bearing neurons expressed the CSP
eigengene lower than the mean (that is, <1% of neurons with NFTs
could be confidently considered not senescent, Fig. 3a). However, we
are cautious not to label the remaining 99% of NFT-bearing neurons
as senescent. Our stringent cutoff required expression levels greater
than mean + 3s.d. With these criteria, 35% of NFT-bearing neurons
were identified as senescent and <1% as not senescent. The remain-
ing 64% of NFT-bearing neurons could not be considered either
senescent or not senescent, but instead showing upregulated senes-
cence eigengene expression. Similar patterns were observed across
all eigengenes to confirm and validate the interpretation (Fig. 3a—c).
We also determined the distribution of the senescent neurons identi-
fied to contain NFTs (that is, used the same experimental approach,
but asked the question in the opposite direction). In cohort 1, all
senescent cells expressed the NFT eigengene greater than the mean
of all neurons (Fig. 3d-f). Approximately 14% of the senescent neu-
rons coexpressed the NFT eigengene greater than mean +3s.d. The
remaining 86% of cells had upregulated the NFT eigengene (4%,
34% and 48% mean + 1s.d., 2s.d. and 3s.d., respectively), but did not
reach >mean+3s.d. criteria. Overall, our data indicate significant
overlap in cells coexpressing the senescence and NFT eigengenes; all
neurons that expressed the NFT eigengene coexpressed the senes-
cence eigengene greater than those without NFTs. Moreover, 99%
of neurons that expressed the senescence eigengene coexpressed the
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NFT eigengene greater than those that were not senescent. Thus,
senescent and NFT-bearing neurons overlap.

The association between senescence and stage of AD was also
evaluated. Across eigengenes, the numbers of identified senescent
cells per brain and AD stages were not significantly associated except
for astrocytes, and only with the SRP eigengene. The number of
astrocytes that expressed the SRP eigengene (that is, inflammation/
SASP) was higher in the 24 individuals that Mathys et al."” reported
to have early or late AD pathology compared with the 24 individu-
als without pathology (that is, 107 versus 61 cells, P value adjusted
for testing multiple cell types <0.003). Astrocytes expressing SRP
were also more abundant in the 24 individuals in Braak stage IV
to VI compared with the 24 individuals Braak stage I to III (that is,
60 versus 108 cells, adjusted P value <0.02). Since the number of
astrocytes expressing the CSP or SIP were similar between groups,
we interpret that these cells were not fully senescent. Instead, they
may have been in transition to becoming senescent or displayed a
proinflammatory stress response not linked to senescence.

To gain insight into the mechanistic regulators of the senescence
phenotype, we determined the weight that each gene contributed to
their respective senescence eigengenes (CSP: Fig. 4a; SIP and SRP:
Supplementary Fig. 6 and Supplementary Table 1). CDKN2D con-
tributed most to the CSP eigengene (Fig. 4a). The average value of
normalized CDKN2D expression in the three cell clusters that were
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Fig. 4 | Upregulated CDKN2D and p19 deposition co-occur with tau neuropathology and morphological characteristics of cellular senescence in human
AD. a, Weight of each gene in the CSP eigengene based on principal component analysis; CDKN2D had the highest weight. b,c, RNAscope probe CDKN2D
in control (b) and AD (c) brains was performed on n=3 control and n=3 AD cases. Scale bar, 50 pm. d-g, RNAscope colabeled nuclei (d), CDKN2D (e),
AT8 (phosphorylated tau, NFTs) (f) and color merged images (g). Scale bars, 10 pm. h-o, Representative images of frontal cortex in control (h, n=2) and
AD neuropathologic change (n=9) cases (i-k) stained with (h-k) AT8 and adjacent section stained with anti-p19 antibody (I-0) (corresponding AT8
stains are directly above p19 stains). Scale bar, 80 pm. p-t, Coimmunofluorescence staining with AT8 (p), nuclear membrane lamin B1(q), p19 (r) and
Hoechst nuclear stain (s); overlap of all channels (t). u, Color-inverted Hoechst nuclear image for purposes of better visualizing nuclear morphology. Open
black arrow, nuclei without p19 or NFTs; open cyan arrow, nuclei with p19; closed arrowhead, nuclei with p19 with NFTs. Scale bar, 10 pm. v, Quantification
of cell nucleus area across cells without p19 or NFT staining (control) or expressing p19 with or without NFTs (as indicated in u). Characteristic lipofuscin
autofluorescence (white arrowheads in p and t) was also quantified. Data presented as mean + s.e.m. One way analysis of variance with Tukey's multiple
comparisons test. ** P=0.0031, ****P < 0.0001. n (number of cells), Control (p19-negative, AT8 negative): 101, p19 only: 44, p19+NFTs: 164.:
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enriched in senescent neurons (Supplementary Fig. 7) was 0.1, which
was 1.4-fold higher than the excitatory neurons in other clusters (-
log,, P value from the Wilcoxon rank sum test >15). Profiling single
cells based on only elevated CDKN2D expression resulted in a simi-
lar cellular composition as with the senescence eigengenes (that is,
predominantly excitatory neurons; Extended Data Fig. 6). However,
the number of senescent excitatory neurons was overestimated in this
analysis (CDKN2D: 2,731 versus CSP eigengene: 1,485) to indicate that
not all cells with elevated CDKN2D could be considered senescent.

RNAscope indicated elevated CDKN2D expression in AD cases
compared with controls (Fig. 4b,c and Extended Data Fig. 7), local-
ization in neurons (Extended Data Fig. 8) and overlap with NFTs
(Fig. 4d-g and Supplementary Fig. 12). Immunohistochemistry
confirmed expression of the CDKN2D protein product, pl9, in
postmortem human AD with NFTs (Fig. 4h-o). The proportion of
p19-positive cells ranged from 4% to 22% (Supplementary Table 4),
consistent with estimates of the eigengene (Fig. 1). Staining revealed
P19 expression in the nucleus, neuropil and in neuritic plaques of
some AD cases (Fig. 4l1-0). Coimmunofluorescence with Map2
(that is, neurons; Supplementary Fig. 9) or AT8 (that is, NFTs;
Fig. 4t) with p19 indicated 30% of total neurons and 72% of those
with NFTs neurons coexpressed p19. Karyomegaly™ and lipofus-
cin® represent characteristic senescence morphologies and lyso-
somal degradation byproducts, respectively. They are not linked to
specific marker genes, and thus allow for an unbiased validation of
senescence. These analyses indicated that p19-expressing neurons
had nuclei that were 1.8-fold larger than those of p19-negative neu-
rons, and nuclei size was increased further by the presence of NFTs
(P<0.0001 and P=0.0031, respectively; Fig. 4v). Similarly, twice as
many pl9-expressing neurons contained lipofuscin deposits than
p19-negative neurons; this proportion increased to 98% in the pres-
ence of NFTs (Fig. 4v and Supplementary Fig. 13). Costaining with
anti-lamin b1 to visualize the nuclear membrane further highlighted
aberrant nuclear morphology in p19-positive cells (Fig. 4q,s—u and
Supplementary Fig. 14), consistent with previous reports in AD*,
senescence’’ and our eigengene prediction (Supplementary Fig. 6b).

In summary, we developed, tested and validated the eigengene
approach to identify senescent cells in transcriptomic datasets. Data
from five separate human brain cohorts, six senescence transcrip-
tomic profiles, two neuropathology profiles and RNA and protein
histological methods indicated that excitatory neurons with upreg-
ulated CDKN2D/p19 and NFT neuropathology represent a unique
cell population in human AD brains with morphological features
consistent with senescence. Future studies are needed to validate
and identify additional biomarkers, and to explain the interaction
between p19 and tau pathology in senescence. While our data pro-
vide early insight into the heterogeneity of senescence marker genes
and cell types in the brain, they also caution against reliance on SASP
alone for identifying senescence in the brain. Specifically, astro-
cytes and endothelial cells upregulated SASP genes in the absence
of other senescence hallmarks. Overall, the findings emphasize the
utility and importance of applying multianalyte approaches when
studying complex, dynamic cellular stress responses. Using these
validated eigengenes in future studies may help guide senescence
profiling across human tissues.

Methods

Ethics Oversight. Our research complies with all relevant ethical regulations.
Postmortem tissues used for immunohistochemistry and immunofluorescence
were provided by the Biggs Institute Brain Bank, which collected donor tissue
in accordance with the University of Texas Health San Antonio Institutional
Review Board. Postmortem tissue used for RNAScope was obtained from the
Massachusetts Alzheimer’s Disease Research Center (ADRC), which collected
donor tissue in accordance with the Massachusetts General Hospital (MGH)
Institutional Review Board.

snRNA-Seq and scRNA-Seq datasets. In this study, we refer to two snRNA-Seq
datasets generated by Mathys et al."” and Zhou et al.”” as cohort 1 and cohort 2,
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respectively. Datasets were accessed through Accelerating Medicines Partnership—
AD (AMP-AD*") with Synapse IDs syn18485175 and syn21126462, respectively.
The data included around 80,000 (ref. '*) and around 70,000 (ref. *°) single nuclei
derived from the dorsolateral prefrontal cortex of 48 and 32 postmortem human
brain samples, respectively. These data were provided by the longitudinal cohort
studies of aging and dementia: the Religious Order Study (ROS) and the Rush
Memory and Aging Project (MAP)*. Inclusion criteria were the same as in the
data-generating studies. Specifically, in cohort 1, 24 control individuals were
selected with no or very little pathology in addition to 24 age-matched individuals
with a spectrum of mild-to-severe -amyloid and other pathologies"”. The mean
and median of age were 86 and 87 years old, respectively, with s.d. of 5years. In
cohort 2, 11 people with AD carrying TREM2-CV, 10 people with AD carrying
TREM2-R62H and 11 age-matched controls were included”. The mean and
median of age were 89 years old with s.d. of 6 years. Four subjects (10248033,
20207013, 10290265 and 11072071) were represented in both datasets. We
included them only in cohort 1 but not in cohort 2; in total around 140,000 cells
from 76 brains were analyzed (Supplementary Table 2). Embryonic brains are not
expected to have a significant senescence burden and, thus, can be appropriate
controls for our study. We used the scRNA-Seq data of around 4,000 cells that Fan
et al.”! generated from cerebral cortex of two female twin embryos of age 22 and 23
weeks. Neurons are often excluded from scRNA-Seq datasets due to their large size;
similarly senescent cells undergo excess growth™” and may also be excluded from
scRNA-Seq profiling. Nevertheless, to assess the extensibility of our approach, we
analyzed the scRNA-Seq data of around 13,000 cells that Grubman and colleagues
generated from the entorhinal cortex of 12 individuals®” (Supplementary Figs. 2, 10
and 11).

Eigengene analysis. We downloaded snRNA-Seq data from the studies of
Mathys et al.”” and Zhou et al.*’, which were available from the AMP-AD"
website, using the synapser (https://r-docs.synapse.org/articles/synapser.html)

R package” (v.0.6.61) and custom R scripts' (v.3.6.1). We downloaded clinical
data from the corresponding publication pages. For each of the three gene sets in
the Supplementary Table 1 (refs. >**) we used the compute.pigengene() function
from the Pigengene package (v.1.13.4) to compute an eigengene', which is a
weighted average expression over all genes in the corresponding list'”. Following
our previous approach on computing eigengenes'®**’, we balanced the number
of cells in each cell type using oversampling, so that all cell types had comparable
representatives in the analysis. Specifically, we repeated the data of each astrocyte
104, endothelial cell 2,919, excitatory neuron 10, inhibitory neuron 38, microglia
184, oligodendrocyte 19, oligodendrocyte precursor cell 134 and pericytes 2,115
times, and obtained 352,768; 353,199; 349,760; 349,448; 353,280; 346,465; 352,018
and 353,205 samples from each cell type, respectively. Weights were optimized
using a principal component analysis. We computed the mean expression of each
eigengene over all analyzed cells. Cells were considered senescent if their level of
eigengene expression was more than the mean expression over all cells plus three
times the s.d. Hypergeometric tests were used to identify the cell types in which
senescent cells were overrepresented. We used the project.eigen() function from
the Pigengene package to infer the eigengenes values in the validation datasets
based on the same weights that we had obtained from our analysis on cohort 1 as
the training dataset. To see how much senescence and NFT expressing eigengenes
overlap, we visualized their expression in density plots using the ggplot2 package.
A kernel density estimate was used to represent the probability density function of
eigengene values (Fig. 3). We tested the significance of overlap between NFT cells
and senescent cells with hypergeometric tests using the phyper function in R. We
set the log.p parameter to TRUE to increase the reporting accuracy. Throyghout
this paper, we replaced the log,, of any P value between 0.1 and 1 with -0. QL

Cell clustering. We applied the Seurat pipeline* to cluster the cells in cohort 1
based on their gene expression profile in an unbiased way, agnostic to senescence
markers. First, we performed quality control and removed cells with less than 200,
or more than 6,000, detected genes. We also removed genes expressed in fewer than
three cells. Then, we normalized the raw counts using the sctransform method

in Seurat, which applied a regularized negative binomial regression modeling
approach for the normalization and variance stabilization of molecular counts®.
We used the RunPCA() function to identify the top 3,000 most variable genes, the
FindNeighbors() function to construct a K-nearest neighbor graph based on the
Euclidean distance calculated from the top 30 principal components™, and the
FindClusters() function to identify cell clusters based on the Louvain algorithm®'.
We set the resolution parameter for the clustering granularity as 0.8. To visualize
the cell clusters, we used the uniform manifold approximation and projection
method for nonlinear dimensional reduction®. For each cell cluster, we performed
Fisher’s exact test to assess its enrichment in the cells that we had previously
identified as senescent based on our eigengene approach.

Immunohistochemical staining. Immunohistochemical (IHC) stains were
performed using a Thermo Scientific Lab Vision Autostainer 480 following
deparaffinization of formalin-fixed paraffin-embedded sections (FFPE) and 30 min
of heat-induced antigen retrieval in citrate buffer. Endogenous peroxidase was
blocked by immersion in 3% hydrogen peroxide for 10 min, then rinsing. A protein
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block for 15 min with 2.5% normal goat serum (Sigma) was then performed. After
rinsing, sections were incubated with either mouse anti-human monoclonal AT8
antibody (Thermo Scientific) at 1:2,000 or rabbit polyclonal anti-p19 antibody
(Abcam) at 1:100 for 45 min, washed and incubated with undiluted secondary
antibody (goat anti-mouse or goat anti-rabbit, respectively, IgG (HRP), VisUCyte)
for 45 min followed by rinsing. Diaminobenzidine (DAB) chromagen (BD
Pharmigen) was used to visualize immunoreactivity. IHC staining for p19 was
performed on FFPE sections of the middle frontal gyrus from six AD cases, all of
which demonstrated a high level of AD neuropathologic change with a Braak stage
of VI, three intermediate ADNC level cases and two primary age-related tauopathy
(PART) control cases (Braak stages I-II) with no neocortical neurofibrillary
tangles.

Immunofluorescence for colabeling. For dual labeling immunofluorescence,
human brain sections were deparaffinized via xylene and hydrated in a series of
graded alcohol. We performed heat-induced antigen retrieval using a pressure
cooker and 10 mM sodium citrate (pH 6.6) with 0.2% Tween. Sections were then
exposed to light-emitting diode light overnight in 10 mM sodium citrate (pH 6.6)
with 0.2% Tween and 0.05% sodium azide in 4 °C and blocked using 0.25% bovine
serum albumin (BSA) and PBS+0.2% Triton-X100 (PBSTr) for 2h at room
temperature. Primary antibodies were added at the following concentrations, p19
(1:100, ab26287, Abcam) and MAP2 (1:200, PA5-17646, Invitrogen) and incubated
overnight at 4°C. Sections were washed three times in PBSTr each for 10 min at
room temperature. Alexa Fluor-conjugated secondary antibodies (ThermoFisher
Scientific) diluted in 0.25% BSA and PBSTr (1:200) were then added and the
sections incubated for 2h at room temperature. Sections were washed three times
with PBSTr and incubated with 0.3% Sudan Black in 70% ethanol for 10 min

and washed ten times with PBS at room temperature. Slides were mounted

using 4,6-diamidino-2-phenylindole (DAPI) Fluromount-G (0100-20, Southern
Biotech). For AT8 and p19 costaining, we used Phospho-Tau (Ser202,Thr205)
(ThermoFisher Scientific, MN1020, conjugated with AF594 using Alexa Fluor
594 Antibody Labeling Kit catalog no. A20185) and P19 INK4d (ab262871,
indirect labeling with Alexa Fluor 647 Tyramide Reagent, catalog no. B40958).
Syto83 was used as a nuclear counterstain as described previously™. Images were
acquired using an Olympus FluoView FV1200 confocal laser scanning microscope.
For quad labeling p19, lamin B1 AT8 and Hoechst straining, following the p19
Tyramide boost step (anti-CDKN2D Sigma catalog no. HPA043546; same clone
as ab262871), slides were microwave-treated in citrate buffer until boiling (100%
power for 127s) followed by 20% power for 15 min, then cooled for 25 min at room
temperature. Slides were placed in a humidity chamber, blocked with 10% normal
goat serum for 1h, then incubated in primary antibodies: mouse monoclonal
lamin b1, clone 10H34L18, 1:500 (ThermoFisher Scientific, catalog no. 702972)
and AT8 1:1000 (ThermoFisher Scientific, catalog no. MN1020) in CST antibody
diluent overnight (18h) at 4°C. The following day, slides were washed in TBS-T
and incubated with secondary antibodies (IgG (H + L) highly cross-absorbed goat
anti-rabbit, Alexa Fluor Plus 647 (catalog no. A32733) and IgG (H + L) highly
cross-absorbed goat anti-mouse, Alexa Fluor Plus 555 (catalog no. A32727))
diluted 1:1500 in TBS-T for 2h at room temperature. Slides were rinsed twice in
TBS-T and incubated in Hoechst 33342 (ThermoFisher Scientific, EQU Imaging
Kit Component G, catalog no. C10337) 1:2,000 in TBS-T for 30 min at room
temperature. Slides were rinsed twice in TBS-T and coverslipped using ProLong
Gold Antifade Reagent (ThermoFisher Scientific, catalog no. P36934), sealed with
nail polish and imaged with an Olympus FluoView FV1200 confocal laser scanning
microscope.

RNAscope. Fresh frozen temporal cortex (Brodmann area 20) was obtained

from the Massachusetts ADRC, which collected donor tissue in accordance

with the MGH Institutional Review Board. AD subjects (#=3) met clinical and
neuropathologic criteria for AD and control subjects (n=3) did not have clinical
or neuropathologic evidence of neurodegenerative disease (Supplementary

Table 5). Cryostat sections were sliced at 8 um and placed on SuperFrost plus
slides. Sections were fixed for 15min in chilled 4% paraformaldehyde in PBS and
then rinsed in PBS and dehydrated in an ascending ethanol series (50%, 70% and
100% twice for 5min each). RNAscope was then performed using the RNAScope
Multiplex Fluorescent V2 Assay (ACD Bio) and HybEZ II Hybridization System
(ACD Bio) according to the manufacturer’s recommendations with the following
modification: treatment with protease IV (ACD Bio) was carried out for 5min at
room temperature. A custom 18 ZZ probe was designed to target a 315-1378 bp
region of CDKN2d (GenBank accession: NM_001800.4; catalog no. 1098101-

cl; ACD Bio). Following in situ hybridization, sections were blocked in 5% BSA
(Sigma Aldrich) for 1h and then mouse anti-HuD (E-1; catalog no. sc-28299; Santa
Cruz Biotechnology) was applied overnight. The following day, donkey anti-mouse
Alexa750 (catalog no. ab175738; Abcam) was applied and then mouse anti-tau-
biotin conjugated (AT8; catalog no. MN1020b; ThermoFisher Scientific) was
applied and incubated overnight. AT8 was detected with streptavidin-Alexa555. All
antibodies were applied at a 1:500 concentration. Sections were then coverslipped
with Fluoromount G with DAPI (Southern Biotech) and sealed with nail polish.
Images were acquired using an Olympus Confocal FV3000 and an Olympus VS120
slide scanner.
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Image quantification. IHC color images were scored manually by a technician
blinded to cases. Total cells and p19-positive cells were counted on a minimum
of two representative images. The images were preselected by a neuropathologist
to ensure similar brain regions were represented across cases. To determine
colocalization of p19, confocal images were analyzed by a technician

blinded to cases. Cell nuclei and lipofuscin measures were quantified from
coimmunofluorescent images using Adobe Photoshop v.22.3.0. Neurons were
chosen at random and categorized by the presence or absence of p19 and AT8
staining. Each neuron’s nuclei and lipofuscin area were measured using the
Histogram tool. Cells for lamin B1 quantification were selected from confocal
z-stack images opened in Image]. To ensure cells were profiled from a mid-cell
plane (that is, not on edges) morphology parameters were applied (that is, size:
85 um?~infinity, with gray scale thresholding 475-65535 and default circularity:
0.00-1.00). The ROI Manager was used to acquire data from individual cells. The
corrected total cell fluorescence (CTCF) was calculated (CTCF =integrated density
- area of selected cell), plotted and analyzed with the aid of GraphPad Prism
Software v.9.1.0.

Statistics and reproducibility. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. Exact n values are reported
in respective figure legends. Reproducibility measures included analyses of

initial and validation datasets (that is, senescence: Cohort 1, Cohort 2, embryo
control and NFTs: Dunckley and Garcia); hypothesis testing by applying multiple,
distinct bioinformatic approaches on each dataset; evaluating distinct datasets
generated by independent laboratories; comparing results between distinct
transcriptomic technologies (snRNA-Seq and scRNA-Seq); confirming senescence
eigengene results from multiple gene lists generated by our group (CSP, SIP and
SRP) and those derived from publicly available senescence gene lists (KEGG,

GO and CellAge); reproducing histology experiments using multiple biological
replicates (postmortem human brains n=5 control and n=12 AD) derived from
separate brain biorepositories (Biggs Institute Brain Bank and Massachusetts
ADRC), across four laboratories (for example, Walker, Frost, Bennett and Orr)
located in three separate institutions (UTHSA, MGH and Wake Forest School

of Medicine); applying multiple, complementary, histological techniques to
confirm bioinformatic findings (RNAscope, immunohistochemistry and
immunofluorescence). The investigators that analyzed/quantified the tissues were
blinded to disease diagnosis (AD or control).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The snRNA-Seq data analyzed in this study are available from https://www.
synapse.org/ with synapse IDs: syn18485175 and syn21126462 for cohorts 1 and
2, respectively. Accessing these data requires submitting a Data Use Certificate
through the AMP-AD website. Clinical data were available in the corresponding
publications. The scRNA-Seq data from the embryonic cortex and the scRNA-
Seq data from the entorhinal cortex are also available from the Gene Expression
Omnibus™ with accession numbers GSE103723 and GSE138852.

Code availability

Our R scripts, which are available as Supplementary material, can be used to fully
reproduce our results. Our code is also publicly available at https://bitbucket.org/
habilzare/alzheimer/src/master/code/senescence/Shiva/.
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Extended Data Fig. 1| Prominent senescent cell types in prefrontal cortex of the embryonic control. Cell types and counts represented in the senescent
cell population discovered in (A) CSP, (B) SIP and (C) SRP. The cutoff and statistical test definitions are the same as in Fig. 1. Cell populations: astrocytes

[Ast], blood cells [Blood], Cajal-Retzius cells [Cajal], endothelial cells [Endo], excitatory neurons [Ext], immune cells [Immune], inhibitory neuron [Inh],
microglia [Micro], neural stem cells [NSC], and oligodendrocyte precursor cells [Oligo] were classified in the original publication.
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Extended Data Fig. 2 | Prominent senescent cell types in the dorsal lateral prefrontal cortex in Cohort 2. Cell types and counts represented in the
senescent cell population discovered in (A) CSP, (B) SIP and (C) SRP with n=57,857. The cutoff, statistical test and abbreviations definitions are the same

as in Fig. 1.
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Extended Data Fig. 3 | Overlap between senescent and NFT neurons. Each vertical bar represents the number of neurons in Cohort 1that express the
eigengenes marked by green circles below the bar. Each row at the bottom corresponds to an eigengene, and the number of neurons expressing that
eigengene is shown in the right end on each row. The probability distributions of multi-set intersections have been calculated and the significance was
tested using a hypergeometric test. The scale bar at top right shows the level of significance for each intersection. The largest p-value is —232 in log10
scale, which corresponds to the intersection between SRP and CSP expressing cells.
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Extended Data Fig. 4 | Prominent senescent cell types using CellAge, GO and KEGG gene lists in Cohort 1. Cell types and counts represented in the
senescent cell population discovered in (A) CellAge, (B) GO and (C) KEGG. The cutoff, statistical test and abbreviations definitions are the same as in Fig. 1.
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Extended Data Fig. 5 | Overlap between senescent cell populations. Each vertical bar represents the number of senescent cells in Cohort 1that express
the senescence eigengenes, marked by green circles below the bar. Each row at the bottom corresponds to a senescence eigengene, and the number of
senescent cells expressing that eigengene is shown at the end of each row. The probability distributions of multi-set intersections have been calculated
and the significance was tested using a hypergeometric test. The scale bar at top right shows the level of significance for each intersection. The largest
p-value is-260 in log10 scale corresponding to the intersection of SRP and CSP.
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Extended Data Fig. 6 | Excitatory neurons are the prominent senescent cell types based on CDKN2D in (A) Cohort 1and (B) Cohort 2. Cell types and
counts represented in the senescent cell population using only CDKN2D. The cutoff, statistical tests and abbreviations definitions are the same as in Fig. 1.
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Extended Data Fig. 7 | RNAscope reveals higher CDKN2D expression in postmortem brains from cases with AD than age-matched control brains.
A. CDKN2D negative and positive control probe signal. B. CDKN2D RNAscope on three separate AD cases (n=3) compared to a representative age-
matched non-demented control (n=3) (refer to Supplementary Table 5 for case characteristics. Scale bar 50 pm.
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CDKN2D

Extended Data Fig. 8 | CDKN2D RNAscope co-localized with neuronal marker, HuD. Postmortem AD tissue was processed for RNAscope with CDKN2D
(green) and co-labeled for total nuclei (DAPI, gray) and neurons (HuD, cyan)/ Merged image display strong overlap between CDKN2D and neurons,

but not other cell types (that is, blue and green co-localization with infrequent green co-localization in nuclei without HuD staining). Scale bar 10 pm.
Representative images from postmortem human brains (n=3 control and n=3 AD cases).
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Sample size No sample size calculation was performed. We used all datasets that were previously generated in other studies and were available to us.

Data exclusions  Four subjects (i.e, ROS1, ROS23, ROS37, and ROS38) were excluded from the validation cohort 2 because they were included in the training
cohort 1 dataset.

Replication We used the same eigengenes that were calculated from cohort 1 to repeat the analysis on cohort 2, embryonic control and the Grubman
scRna-Seq dataset. As in cohort 1, the excitatory neurons were also identified as the prominent senescent cell type in CSP and SIP in cohort 2.
This was not true for SRP. One reason for this discrepancy might be that unlike cohort 1, the number of cells labeled as oligodendrocytes in
cohort 2 is twice the excitatory cell type. All attempts at replication were successful. Our measures included using multiple bioinformatic
approaches on several datasets generated by independent laboratories; reproducing histology experiments using postmortem human brains
derived from separate brain biorepositories across three laboratories located in two separate institutions. Specifically, (i) applying our
eigengenes to Cohort 2 reproduced findings as in Cohort 1; (ii) creating eigengenes from publicly available senescence gene lists [e.g., CellAge,
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases] validated our eigengene results across both Cohorts;
(iii) applying a third approach, cell clustering using the Seurat pipeline, further reinforced our findings by confirming the initial eigengene
results; (iv) CDKN2D RNAscope confirmed elevated expression in AD brains to validate the bioinformatic results; (v) p19
immunohistochemistry confirmed the CDKN2D RNAscope data using antibodies from two separate vendors (Abcam and Sigma); and (vi) p19
immunofluorescence reproduced the findings predicted by the eigengenes that was confirmed by RNAscope and validated by
immunohistochemistry; (vii) histology was performed by three separate laboratories located in separate institutions.

Randomization  We were not working with experimental groups in this study. Clusters of different cell types were previously identified in Mathys and Zhou
papers.

Blinding Blinding was used for histological analyses. Specifically, immunohistochemistry color images were manually scored by a technician blinded to
cases. Total cells and p19 positive cells were counted on a minimum of 2 representative images. The images were pre-selected by a
neuropathologist to ensure similar brain regions were represented across cases. To determine co-localization of p19, confocal images were
analyzed by a technician blinded to cases.
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Involved in the study n/a | Involved in the study
™ Antibodies |Z |:| ChlP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Antibodies

Antibodies used Mouse monoclonal anti-human phospho-Tau (Ser202,Thr205) clone AT8, 1:100, (ThermoFisher Scientific, MN1020); mouse
polyclonal anti-MAP2, 1:100, (PA5-17646, Invitrogen); Rabbit polyclonal anti-human P19 INK4d, 1:100, (Abcam, ab262871 and Sigma,
HPA043546); mouse polyclonal anti-Lamin B1, 1:500, (ThermoFisher Scientific, clone 10H34L18, cat no. 702972); mouse monoclonal
anti-HuD, 1:500 (E-1; cat no. sc-28299). Secondary antibodies: Goat anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed Secondary Antibody,
Alexa Fluor Plus 647, 1:1500; (Invitrogen, Catalog # A32733); Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody,
Alexa Fluor Plus 555, 1:1500 (Invitrogen, Catalog # A32727).




Validation

All the primary antibodies have been validated by either the manufacturer or other uses in the published studies which could be
found on the manufacturer's website. Examples include: AT8 has received an “Advanced Verification” badge by Invitrogen as it has
been verified by Cell treatment to ensure that the antibody binds to the antigen stated. We have validated AT8 using tau over-
expression and tau knockout samples (Orr et al 2012 PlosOne, PMC3377636). Similarly, anti-Map2 has received the same badge by
Invitrogen; it was verified by Relative expression levels in vitro across several cell lines and brain developmental changes by our group
(Orr et al 2016, Front Neurosci; PMC5099538). Anti-P19 has received the Abcam “Abpromise” which guarantees product applications
& species that have been tested in their labs, by their suppliers, or by selected trusted collaborators. Additionally, this is a Prestige
Antibody® all of which undergo in-depth validation as well as characterization using the immense amount of supporting data from
the Human Protein Atlas project. The low cross reactivity for Prestige Antibodies® to other proteins is the result of careful selection
of antigen regions, affinity purification, and are validated and characterized in each application that the antibody has been
demonstrated for use. Each antibody is characterized on a lot-to-lot basis with application-specific validation that includes IHC, IF,
WSB, and or protein array assays. The anti-Lamin B1 antibody was verified by knockdown to ensure that the antibody binds to the
antigen stated. From the vendor web site: Antibody specificity was demonstrated by siRNA mediated knockdown of the target
protein. Hela cells were transfected with Lamin B1 siRNA and a decrease in signal intensity was observed in Western blot application
using Anti-Lamin B1 Recombinant Rabbit Monoclonal Antibody cat# 70297). HuD (E-1) is @ mouse monoclonal antibody raised against
amino acids 1-300 of HuD of human origin.
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