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Part I

• Introduction

• Necessary mathematical concepts

• Support vector machines for binary 
classification: classical formulation

• Basic principles of statistical machine learning

2



Introduction
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About this tutorial
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Main goal: Fully understand support vector machines (and 
important extensions) with a modicum of mathematics 
knowledge.

• This tutorial is both modest (it does not invent anything new)
and ambitious (support vector machines are generally 
considered mathematically quite difficult to grasp).

• Tutorial approach: 
learning problem main idea of the SVM solution 
geometrical interpretation math/theory 
basic algorithms  extensions  case studies.



Data-analysis problems of interest

1. Build computational classification models (or 
“classifiers”) that assign patients/samples into two or 
more classes. 

- Classifiers can be used for diagnosis, outcome prediction, and 
other classification tasks.

- E.g., build a decision-support system to diagnose primary and 
metastatic cancers from gene expression profiles of the patients:
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Data-analysis problems of interest

2. Build computational regression models to predict values 
of some continuous response variable or outcome. 

- Regression models can be used to predict survival, length of stay 
in the hospital, laboratory test values, etc.

- E.g., build a decision-support system to predict optimal dosage 
of the drug to be administered to the patient. This dosage is 
determined by the values of patient biomarkers, and clinical and 
demographics data:
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Regression 
model

Patient
Biomarkers, 
clinical and 

demographics data

Optimal 
dosage is 5 
IU/Kg/week

1 2.2 3 423 2 3 92 2 1 8



Data-analysis problems of interest

3. Out of all measured variables in the dataset, select the 
smallest subset of variables that is necessary for the 
most accurate prediction (classification or regression) of 
some variable of interest (e.g., phenotypic response 
variable).

- E.g., find the most compact panel of breast cancer biomarkers 
from microarray gene expression data for 20,000 genes:
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Breast 
cancer 
tissues

Normal
tissues



Data-analysis problems of interest

4. Build a computational model to identify novel or outlier 
patients/samples.

- Such models can be used to discover deviations in sample 
handling protocol when doing quality control of assays, etc.

- E.g., build a decision-support system to identify aliens.
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Data-analysis problems of interest

5. Group patients/samples into several 
clusters based on their similarity. 

- These methods can be used to discovery 
disease sub-types and for other tasks.

- E.g., consider clustering of brain tumor 
patients into 4 clusters based on their gene 
expression profiles. All patients have the 
same pathological sub-type of the disease, 
and clustering discovers new disease 
subtypes that happen to have different 
characteristics in terms of patient survival 
and time to recurrence after treatment.
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Basic principles of classification

10

• Want to classify objects as boats and houses.



Basic principles of classification
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• All objects before the coast line are boats and all objects after the 
coast line are houses. 

• Coast line serves as a decision surface that separates two classes.



Basic principles of classification
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These boats will be misclassified as houses



Basic principles of classification
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Longitude

Latitude

Boat

House

• The methods that build classification models (i.e., “classification algorithms”) 
operate very similarly to the previous example.

• First all objects are represented geometrically.



Basic principles of classification
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Longitude

Latitude

Boat

House

Then the algorithm seeks to find a decision 
surface that separates classes of objects 



Basic principles of classification
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Longitude

Latitude

? ? ?

? ? ?

These objects are classified as boats

These objects are classified as houses

Unseen (new) objects are classified as “boats” 
if they fall below the decision surface and as 
“houses” if the fall above it



The Support Vector Machine (SVM) 
approach
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• Support vector machines (SVMs) is a binary classification 
algorithm that offers a solution to problem #1.

• Extensions of the basic SVM algorithm can be applied to 
solve problems #1-#5.

• SVMs are important because of (a) theoretical reasons:
- Robust to very large number of variables and small samples

- Can learn both simple and highly complex classification models

- Employ sophisticated mathematical principles to avoid overfitting

and (b) superior empirical results.



Main ideas of SVMs
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Cancer patientsNormal patients
Gene X

Gene Y

• Consider example dataset described by 2 genes, gene X and gene Y
• Represent patients geometrically (by “vectors”)



Main ideas of SVMs
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• Find a linear decision surface (“hyperplane”) that can separate 
patient classes and has the largest distance  (i.e., largest “gap” or 
“margin”) between border-line patients (i.e., “support vectors”);

Cancer patientsNormal patients
Gene X

Gene Y



Main ideas of SVMs
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• If such linear decision surface does not exist, the data is mapped 
into a much higher dimensional space (“feature space”) where the 
separating decision surface is found;

• The feature space is constructed via very clever mathematical 
projection (“kernel trick”).

Gene Y

Gene X

Cancer

Normal

Cancer

Normal

kernel

Decision surface



History of SVMs and usage in the literature
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• Support vector machine classifiers have a long history of 
development starting from the 1960’s.

• The most important milestone for development of modern SVMs 
is the 1992 paper by Boser, Guyon, and Vapnik (“A training 
algorithm for optimal margin classifiers”)
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Necessary mathematical concepts
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How to represent samples geometrically?
Vectors in n-dimensional space (Rn)

• Assume that a sample/patient is described by n characteristics 
(“features” or “variables”)

• Representation: Every sample/patient is a vector in Rn with 
tail at point with 0 coordinates and arrow-head at point with 
the feature values.

• Example: Consider a patient described by 2 features: 
Systolic BP = 110 and Age = 29. 

This patient can be represented as a vector in R2:

22Systolic BP

Age

(0, 0)

(110, 29)
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Patient 
id

Cholesterol 
(mg/dl)

Systolic BP 
(mmHg)

Age 
(years)

Tail of the 
vector

Arrow-head of 
the vector

1 150 110 35 (0,0,0) (150, 110, 35)
2 250 120 30 (0,0,0) (250, 120, 30)
3 140 160 65 (0,0,0) (140, 160, 65)
4 300 180 45 (0,0,0) (300, 180, 45)
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Since we assume that the tail of each vector is at point with 0 
coordinates, we will also depict vectors as points (where the 
arrow-head is pointing).



Purpose of vector representation
• Having represented each sample/patient as a vector allows 

now to geometrically represent the decision surface that 
separates two groups of samples/patients.

• In order to define the decision surface, we need to introduce 
some basic math elements…
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Basic operation on vectors in Rn

1. Multiplication by a scalar

Consider a vector                               and a scalar c
Define:

When you multiply a vector by a scalar, you “stretch” it in the 
same or opposite direction depending on whether the scalar is 
positive or negative.
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Basic operation on vectors in Rn

2. Addition

Consider vectors                               and 

Define:

Recall addition of forces in 
classical mechanics.

),...,,( 21 naaaa =
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),...,,( 21 nbbbb =


),...,,( 2211 nn babababa +++=+


1

2

3

4

0 1 2 3 4

)2,4(

)0,3(

)2,1(

=+

=

=

ba

b

a







a

b


ba


+



Basic operation on vectors in Rn

3. Subtraction

Consider vectors                               and 

Define:

What vector do we 
need to add to    to 
get    ? I.e., similar to 
subtraction of real 
numbers.

),...,,( 21 naaaa =


28

),...,,( 21 nbbbb =
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Basic operation on vectors in Rn

4. Euclidian length or L2-norm

Consider a vector                              

Define the L2-norm:

We often denote the L2-norm without subscript, i.e.     
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L2-norm is a typical way to 
measure length of a vector; 
other methods to measure 
length also exist.



Basic operation on vectors in Rn

5. Dot product

Consider vectors                               and 

Define dot product:

The law of cosines says that                                            where 
θ is the angle between    and   . Therefore, when the vectors 
are perpendicular                .

),...,,( 21 naaaa =


30

),...,,( 21 nbbbb =


∑
=

=+++=⋅
n

i
iinn bababababa

1
2211 ...



θcos|||||||| 22 baba


=⋅
a b



0=⋅ba


1

2

3

4

0 1 2 3 4

3

)0,3(

)2,1(

=⋅

=

=

ba

b

a







a

b


1

2

3

4

0 1 2 3 4

0

)0,3(

)2,0(

=⋅

=

=

ba

b

a







a

b


θ θ



Basic operation on vectors in Rn

5. Dot product (continued)

• Property: 

• In the classical regression equation 

the response variable y is just a dot product of the 

vector representing patient characteristics (   ) and

the regression weights vector ( ) which is common

across all patients plus an offset b.
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Hyperplanes as decision surfaces

• A hyperplane is a linear decision surface that splits the space 
into two parts;

• It is obvious that a hyperplane is a binary classifier.
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Equation of a hyperplane

Source: http://www.math.umn.edu/~nykamp/

First we show with show the definition of 
hyperplane by an interactive demonstration.

or go to http://www.dsl-lab.org/svm_tutorial/planedemo.html

Click here for demo to begin

http://www.math.umn.edu/~nykamp/�
http://www.dsl-lab.org/svm_tutorial/planedemo.html�
http://www.dsl-lab.org/svm_tutorial/planedemo.html�
http://www.dsl-lab.org/svm_tutorial/planedemo.html�


Equation of a hyperplane
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Consider the case of R3:

An equation of a hyperplane is defined 
by a point (P0) and a perpendicular 
vector to the plane (   ) at that point.w

P0P

w

0xx

0xx 
−

Define vectors:                    and                , where P is an arbitrary point on a hyperplane.00 OPx =
 OPx =

A condition for P to be on the plane is that the vector              is perpendicular to     :

The above equations also hold for Rn when n>3.
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Equation of a hyperplane
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What happens if the b coefficient changes? 
The hyperplane moves along the direction of    . 
We obtain “parallel hyperplanes”.
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(Derivation of the distance between two 
parallel hyperplanes)
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Recap
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We know…
• How to represent patients (as “vectors”)
• How to define a linear decision surface (“hyperplane”)

We need to know…
• How to efficiently compute the hyperplane that separates 

two classes with the largest “gap”?

 Need to introduce basics 
of relevant optimization 
theory

Cancer patientsNormal patients
Gene X

Gene Y



Basics of optimization: 
Convex functions
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• A function is called convex if the function lies below the 
straight line segment connecting two points, for any two 
points in the interval.

• Property: Any local minimum is a global minimum!

Convex function Non-convex function

Global minimum Global minimum

Local minimum
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• Quadratic programming (QP) is a special 
optimization problem: the function to optimize 
(“objective”) is quadratic, subject to linear 
constraints.

• Convex QP problems have convex objective 
functions.

• These problems can be solved easily and efficiently 
by greedy algorithms (because every local 
minimum is a global minimum).

Basics of optimization: 
Quadratic programming (QP)



Consider 

Minimize                    subject to

This is QP problem, and it is a convex QP as we will see later

We can rewrite it as:

Minimize                             subject to
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Basics of optimization: 
Example QP problem
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Basics of optimization: 
Example QP problem

x1

x2

f(x1,x2)

)(
2
1 2

2
2
1 xx +

121 −+xx

0121 ≥−+xx

0121 ≤−+xx

The solution is x1=1/2 and x2=1/2.



Congratulations! You have mastered 
all math elements needed to 

understand support vector machines. 

Now,  let us strengthen your 
knowledge by a quiz 
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1) Consider a hyperplane shown 
with white. It is defined by 
equation: 
Which of the three other 
hyperplanes can be defined by 
equation:                          ?

- Orange
- Green
- Yellow

2) What is the dot product between 
vectors                  and                   ?

Quiz
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1

3) What is the dot product between 
vectors                  and                  ?

4) What is the length of a vector 
and what is the length of 

all other red vectors in the figure?

Quiz

44

)3,3(=a )0,1(=b


b


1

2

3

4

0 2 3 4-2 -1

-2

-1

a

)0,2(=a

1

1

2

3

4

0 2 3 4-2 -1

-2

-1

a



5) Which of the four functions is/are convex?

Quiz

45

1

3

2

4



Support vector machines for binary 
classification: classical formulation
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Case 1: Linearly separable data; 
“Hard-margin” linear SVM

Given training data:
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Positive instances (y=+1)Negative instances (y=-1)

• Want to find a classifier 
(hyperplane) to separate 
negative instances from the 
positive ones.

• An infinite number of such 
hyperplanes exist.

• SVMs finds the hyperplane that 
maximizes the gap between 
data points on the boundaries 
(so-called “support vectors”).

• If the points on the boundaries 
are not informative (e.g., due to 
noise), SVMs will not do well.



w
Since we want to maximize the gap,

we need to minimize

or equivalently minimize

Statement of linear SVM classifier

48

Positive instances (y=+1)Negative instances (y=-1)
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The gap is distance between 
parallel hyperplanes:

and

Or equivalently:
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In summary:

Want to minimize            subject to                                   for i = 1,…,N
Then given a new instance x, the classifier is 

Statement of linear SVM classifier
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Positive instances (y=+1)Negative instances (y=-1)
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1+≥+⋅ bxw 

1−≤+⋅ bxw 
In addition we need to 
impose constraints that all 
instances are correctly 
classified. In our case:

if
if

Equivalently:
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Minimize                 subject to                                       for i = 1,…,N

SVM optimization problem: 
Primal formulation
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Objective function Constraints

• This is called “primal formulation of linear SVMs”.
• It is a convex quadratic programming (QP) 

optimization problem with n variables (wi, i = 1,…,n), 
where n is the number of features in the dataset.



SVM optimization problem: 
Dual formulation
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• The previous problem can be recast in the so-called “dual 
form” giving rise to “dual formulation of linear SVMs”.

• It is also a convex quadratic programming problem but with 
N variables (αi ,i = 1,…,N), where N is the number of 
samples.

Maximize                                               subject to              and                    .

Then the w-vector is defined in terms of αi:

And the solution becomes:
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SVM optimization problem: 
Benefits of using dual formulation
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1) No need to access original data, need to access only dot 
products.

Objective function:

Solution:

2) Number of free parameters is bounded by the number 
of support vectors and not by the number of variables 
(beneficial for high-dimensional problems).

E.g., if a microarray dataset contains 20,000 genes and 100 
patients, then need to find only up to 100 parameters!
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Minimize                 subject to                                       for i = 1,…,N

(Derivation of dual formulation)
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Objective function Constraints

Apply the method of Lagrange multipliers.

Define Lagrangian

We need to minimize this Lagrangian with respect to          and simultaneously 
require that the derivative with respect to        vanishes , all subject to the 
constraints that 
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(Derivation of dual formulation)
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If we set the derivatives with respect to          to 0, we obtain:

We substitute the above into the equation for                        and obtain “dual 
formulation of linear SVMs”:

We seek to maximize the above Lagrangian with respect to     , subject to the 

constraints that               and                      .
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Case 2: Not linearly separable data;
“Soft-margin” linear SVM
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Want to minimize                               subject to                                         for i = 1,…,N

Then given a new instance x, the classifier is 
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Assign a “slack variable” to each instance              , which can be thought of distance from 
the separating hyperplane if an instance is misclassified and 0 otherwise.

0≥iξ

0
0 0

0
0

0
0

0 0
0

0

0

0
0

0What if the data is not linearly 
separable? E.g., there are 
outliers or noisy measurements, 
or the data is slightly non-linear.

Want to handle this case without changing 
the family of decision functions.

Approach:



Two formulations of soft-margin 
linear SVM
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for i = 1,…,N. Objective function Constraints

Primal formulation:

Dual formulation:



Parameter C in soft-margin SVM
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Minimize                               subject to                                         for i = 1,…,N∑
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+
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i
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C=100 C=1

C=0.15 C=0.1

• When C is very large, the soft-
margin SVM is equivalent to 
hard-margin SVM;

• When C is very small, we 
admit misclassifications in the 
training data at the expense of 
having w-vector with small 
norm;

• C has to be selected for the 
distribution at hand as it will 
be discussed later in this 
tutorial.



Case 3: Not linearly separable data;
Kernel trick
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Gene 2

Gene 1

Tumor

Normal

Tumor

Normal?

?

Data is not linearly separable 
in the input space

Data is linearly separable in the 
feature space obtained by a kernel

kernel

Φ

HR →Φ N:



Data in a higher dimensional feature space

Kernel trick
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Therefore, we do not need to know Ф explicitly, we just need to 
define function K(·, ·): RN × RNR.

Not every function RN × RNR can be a valid kernel; it has to satisfy so-called 
Mercer conditions. Otherwise, the underlying quadratic program may not be solvable.



Popular kernels
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A kernel is a dot product in some feature space: 

Examples:
Linear kernel
Gaussian kernel
Exponential kernel

Polynomial kernel

Hybrid kernel

Sigmoidal)tanh(),(
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Understanding the Gaussian kernel
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)exp(),(
2

jj xxxxK 
−−= γConsider Gaussian kernel: 

Geometrically, this is a “bump” or “cavity” centered at the 
training data point      :jx

The resulting 
mapping function 
is a combination 
of bumps and 
cavities.

 "bump”
 “cavity”



Understanding the Gaussian kernel
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Several more views of the 
data is mapped to the 
feature space by Gaussian 
kernel
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Understanding the Gaussian kernel
Linear hyperplane 
that separates two 
classes



Consider polynomial kernel: 

Assume that we are dealing with 2-dimensional data 
(i.e., in R2). Where will this kernel map the data?

Understanding the polynomial kernel
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2-dimensional space

10-dimensional space

kernel



Example of benefits of using a kernel
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)2(x

)1(x

1x

2x

3x4x

• Data is not linearly separable 
in the input space (R2).

• Apply kernel
to map data to a higher 
dimensional space (3-
dimensional) where it is 
linearly separable.
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Example of benefits of using a kernel
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Comparison with methods from classical 
statistics & regression

67

• Need ≥ 5 samples for each parameter of the regression 
model to be estimated:

• SVMs do not have such requirement & often require 
much less sample than the number of variables, even 
when a high-degree polynomial kernel is used.

Number of 
variables

Polynomial 
degree

Number of 
parameters

Required 
sample

2 3 10 50

10 3 286 1,430

10 5 3,003 15,015

100 3 176,851 884,255

100 5 96,560,646 482,803,230



Basic principles of statistical 
machine learning
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Generalization and overfitting

• Generalization: A classifier or a regression algorithm 
learns to correctly predict output from given inputs 
not only in previously seen samples but also in 
previously unseen samples.

• Overfitting: A classifier or a regression algorithm 
learns to correctly predict output from given inputs 
in previously seen samples but fails to do so in 
previously unseen samples.

• Overfitting  Poor generalization.
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Predictor X

Outcome of 
Interest Y

Training Data

Test Data

Example of overfitting and generalization

• Algorithm 1 learned non-reproducible peculiarities of the specific sample 
available for learning but did not learn the general characteristics of the function 
that generated the data. Thus, it is overfitted and has poor generalization.

• Algorithm 2 learned general characteristics of the function that produced the 
data. Thus, it generalizes.

70

Algorithm 2

Algorithm 1

There is a linear relationship between predictor and outcome (plus some Gaussian noise). 

Predictor X

Outcome of 
Interest Y



“Loss + penalty” paradigm for learning to 
avoid overfitting and ensure generalization

• Many statistical learning algorithms (including SVMs) 
search for a decision function by solving the following 
optimization problem:

Minimize (Loss + λ Penalty)

• Loss measures error of fitting the data 

• Penalty penalizes complexity of the learned function

• λ is regularization parameter that balances Loss and Penalty
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SVMs in “loss + penalty” form

SVMs build the following classifiers: 

Consider soft-margin linear SVM formulation:

Find     and     that

Minimize                         subject to                                for i = 1,…,N

This can also be stated as:

Find     and     that

Minimize 

(in fact, one can show that λ = 1/(2C)).
72
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Meaning of SVM loss function

Consider loss function:

• Recall that […]+ indicates the positive part

• For a given sample/patient i, the loss is non-zero if

• In other words, 

• Since                   , this means that the loss is non-zero if
for yi = +1

for yi= -1

• In other words, the loss is non-zero if
for yi = +1

for yi= -1
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Meaning of SVM loss function

Positive instances (y=+1)Negative instances (y=-1)

0=+⋅ bxw 

1+=+⋅ bxw 

1−=+⋅ bxw 

1 2 3 4

• If the instance is negative, 
it is penalized only in 
regions 2,3,4

• If the instance is positive, 
it is penalized only in 
regions 1,2,3



Flexibility of “loss + penalty” framework
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Loss function Penalty function Resulting algorithm

Hinge loss: SVMs

Mean squared error:
Ridge regression

Mean squared error:
Lasso

Mean squared error:
Elastic net

Hinge loss: 1-norm SVM

Minimize (Loss + λ Penalty)
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Part 2

• Model selection for SVMs
• Extensions to the basic SVM model:

1. SVMs for multicategory data
2. Support vector regression
3. Novelty detection with SVM-based methods
4. Support vector clustering
5. SVM-based variable selection
6. Computing posterior class probabilities for SVM 

classifiers
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Model selection for SVMs
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Need for model selection for SVMs

Gene 2

Gene 1

Tumor

Normal

• It is impossible to find a linear SVM classifier 
that separates tumors from normals! 

• Need a non-linear SVM classifier, e.g. SVM 
with polynomial kernel of degree 2 solves 
this problem without errors.

Gene 2

Gene 1

Tumor

Normal

• We should not apply a non-linear SVM 
classifier while we can perfectly solve 
this problem using a linear SVM 
classifier!
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A data-driven approach for 
model selection for SVMs

• Do not know a priori what type of SVM kernel and what kernel 
parameter(s) to use for a given dataset?

• Need to examine various combinations of parameters, e.g. 
consider searching the following grid:

• How to search this grid while producing an unbiased estimate 
of classification performance?

Polynomial degree d

Parameter 
C

(0.1, 1) (1, 1) (10, 1) (100, 1) (1000, 1)

(0.1, 2) (1, 2) (10, 2) (100, 2) (1000, 2)

(0.1, 3) (1, 3) (10, 3) (100, 3) (1000, 3)

(0.1, 4) (1, 4) (10, 4) (100, 4) (1000, 4)

(0.1, 5) (1, 5) (10, 5) (100, 5) (1000, 5)
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Nested cross-validation

Recall the main idea of cross-validation:

data train

test

train

test
train

test

What combination of SVM 
parameters to apply on 
training data?

train

valid train

valid
train

Perform “grid search” using another nested 
loop of cross-validation.
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Example of nested cross-validation

P1

P2

P3
{data

Outer  Loop

Inner Loop
Training 

set
Validation 

set
C Accuracy Average 

Accuracy
P1 P2 86%
P2 P1 84%
P1 P2 70%
P2 P1 90%

1 85%

2 80%

Training 
set

Testing 
set

C Accuracy Average 
Accuracy

P1, P2 P3 1 89%
P1,P3 P2 2 84%
P2, P3 P1 1 76%

83%

choose
C=1}

…

…

Consider that we use 3-fold cross-validation and we want to 
optimize parameter C that takes values “1” and “2”.
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On use of cross-validation

• Empirically we found that cross-validation works well 
for model selection for SVMs in many problem 
domains;

• Many other approaches that can be used for model 
selection for SVMs exist, e.g.:

 Generalized cross-validation
 Bayesian information criterion (BIC)
 Minimum description length (MDL)
 Vapnik-Chernovenkis (VC) dimension
 Bootstrap



SVMs for multicategory data
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One-versus-rest multicategory 
SVM method

* *

*
**

*
* * *

* *

*

*

*

*

*

*

Gene 1

Gene 2

Tumor I

Tumor II

Tumor III

?

?
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One-versus-one multicategory
SVM method

* *

*
**

*
* * *

* *

*

*

*

*

*

*

Gene 1

Gene 2

Tumor I

Tumor II

Tumor III

?

?
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DAGSVM multicategory 
SVM method

Not ALL B-cell

AML vs. ALL T-cell

ALL B-cell vs. ALL T-cell AML vs. ALL B-cell 

Not AML

Not ALL B-cell Not ALL T-cell Not AML

ALL T-cell ALL B-cell AML

Not ALL T-cell
AML vs. ALL T-cell

ALL B-cell vs. ALL T-cell

ALL B-cell
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SVM multicategory methods by Weston 
and Watkins and by Crammer and Singer

* *

*
**

*
* * *

* *

*

*

*

*

*

*

Gene 1

Gene 2

?

?



Support vector regression
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ε-Support vector regression (ε-SVR)

Given training data:
Ryyy
Rxxx

N

n
N

∈
∈

,...,,
,...,,

21

21


Main idea:

Find a function 
that approximates y1,…,yN :
• it has at most ε derivation from

the true values yi
• it is as “flat” as possible (to 

avoid overfitting)

*
* *

*

* ** *

**

* *
* **

*

*

x

y +ε
-ε

bxwxf +⋅=
)(

E.g., build a model to predict survival of cancer patients that 
can admit a one month error (= ε ).



Find 

by minimizing               subject 
to constraints:

for i = 1,…,N.

90

Formulation of “hard-margin” ε-SVR
0=+⋅ bxw 

2
2
1 w

ε
ε
−≥+⋅−

≤+⋅−
)(
)(

bxwy
bxwy

i

i


*
* *

*

* **
*

*
*

* *
* *

*

x

y +ε
-ε

bxwxf +⋅=
)(

I.e., difference between yi and the fitted function should be smaller 
than ε and larger than -ε all points yi should be in the “ε-ribbon” 
around the fitted function.
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Formulation of “soft-margin” ε-SVR

*
* *

*

* **
*

*
*

* *
* *

*

x

y +ε
-ε*

*

If we have points like this 
(e.g., outliers or noise) we 
can either:

a) increase ε to ensure that 
these points are within the 
new ε-ribbon, or

b) assign a penalty (“slack” 
variable) to each of this 
points (as was done for 
“soft-margin” SVMs)
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Formulation of “soft-margin” ε-SVR

*
* *

*

* **
*

*
*

* *
* *

*

x

y +ε
-ε*

*

ξi

ξi
*

Find 

by minimizing               

subject to constraints:

for i = 1,…,N.
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Notice that only points outside ε-ribbon are penalized!
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Nonlinear ε-SVR

*
* **

* ** *

**

* *
* *

*

Φ(x)

y
-Φ(ε)

x

y +ε
-ε

kernel

Φ+Φ(ε)

*
***

*

*
* *

*
*

*
** **

x

y
+ε
-ε

*
***

*

*
* *

*
*

*
** ** Cannot approximate well 

this function with small ε!

1−Φ



Build decision function of the form: 

Find     and     that

Minimize 
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ε-Support vector regression in 
“loss + penalty” form

2

2
1

)|)(|,0max( wxfy
N

i
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w b

Loss 
(“linear ε-insensitive loss”)

Penalty

Error in approximation  

Loss function value
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Comparing ε-SVR with popular 
regression methods

Loss function Penalty function Resulting algorithm

Linear ε-insensitive loss:
ε-SVR

Quadratic ε-insensitive loss:
Another variant of ε-SVR

Mean squared error:
Ridge regression

Mean linear error:
Another variant of ridge 
regression
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Comparing loss functions of regression 
methods

ε-ε

Loss function 
value

Error in 
approximation  

ε-ε

Loss function 
value

Error in 
approximation  

ε-ε

Loss function 
value

Error in 
approximation  

ε-ε

Loss function 
value

Error in 
approximation  

Linear ε-insensitive loss Quadratic ε-insensitive loss

Mean squared error Mean linear error
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Applying ε-SVR to real data

In the absence of domain knowledge about decision 
functions, it is recommended to optimize the following 
parameters (e.g., by cross-validation using grid-search):

• parameter C
• parameter ε
• kernel parameters (e.g., degree of polynomial)

Notice that parameter ε depends on the ranges of 
variables in the dataset; therefore it is recommended to 
normalize/re-scale data prior to applying ε-SVR.



Novelty detection with SVM-based 
methods

98
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What is it about?
• Find the simplest and most 

compact region in the space of 
predictors where the majority 
of data samples “live” (i.e., 
with the highest density of 
samples). 

• Build a decision function that 
takes value +1 in this region 
and -1 elsewhere.

• Once we have such a decision 
function, we can identify novel 
or outlier samples/patients in 
the data.

Predictor X

** *
* *

*
*

* *

*
* *

*

***
*

*
*

*

*
** *

*

*

*

**
*

**
*

**

* *

*
*
* *

*

*

*

** ** ** *
*

*
*
*

*
*

*
**

* ***
*

*

**
*

** ** *

*
*

*

*

*

*
*
**

*
*

*
* *

***
** ** *

*
*
*

*
*
*

*

*

Pr
ed

ic
to

r Y

*
*

**

Decision function = +1

Decision function = -1

** ***** *** ***** *
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Key assumptions

• We do not know classes/labels of samples (positive 
or negative) in the data available for learning
 this is not a classification problem

• All positive samples are similar but each negative 
sample can be different in its own way

Thus, do not need to collect data for negative samples!
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Sample applications

“Novel”

“Novel”

“Novel”

“Normal”

Modified from: www.cs.huji.ac.il/course/2004/learns/NoveltyDetection.ppt

http://www.cs.huji.ac.il/course/2004/learns/NoveltyDetection.ppt�
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Sample applications
Discover deviations in sample handling protocol when 
doing quality control of assays.

Protein X

Protein Y

** *
*

*

*
*

* *
*

*

*

*

*
*

*

*
*
*

*
**

*
*

*

*

*
*

*

*

*

*

** *
**

*

*

**
*

** *
*

*

*
*

*

*
*

*
*
*

*

Samples with high-quality 
of processing

***

Samples with low quality 
of processing from infants

Samples with low quality of 
processing from patients 
with lung cancer

Samples with low quality of 
processing from ICU patients 

Samples with low quality 
of processing from the 
lab of Dr. Smith
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Sample applications
Identify websites that discuss benefits of proven cancer 
treatments.

Weighted 
frequency of 

word Y

** *
*

*

*
*

* *
*

*

*

*

*
*

*

*
*
*

*
**

*
*

*

*

*
*

*

*

*

*

** *
*

*

*
*

*

*

**
*

** *
**

*

*
*

*

*

**
*

Websites that discuss 
benefits of proven cancer 
treatments

** **

Websites that discuss side-effects of 
proven cancer treatments

Blogs of cancer patients

Websites that discuss 
cancer prevention 
methods

Weighted 
frequency of 

word X

*
** Websites that discuss 

unproven cancer treatments

*
*

*

*
*
*

*

*
*
*

*

*

*
*

**
* *
**** ****

*
*

*
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One-class SVM
Main idea: Find the maximal gap hyperplane that separates data from 
the origin (i.e., the only member of the second class is the origin).

iξ

jξ
Use “slack variables” as in soft-margin SVMs 
to penalize these instances

Origin is the only 
member of the 
second class

0=+⋅ bxw 
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Formulation of one-class SVM: 
linear case

iξ

jξ

0=+⋅ bxw 

Find 

by minimizing               

subject to constraints:

for i = 1,…,N.

∑
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Given training data: n
N Rxxx ∈
 ,...,, 21

upper bound on 
the fraction of 
outliers (i.e., points 
outside decision 
surface) allowed in 
the data

i.e., the decision function should 
be positive in all training samples 
except for small deviations
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Formulation of one-class SVM:
linear and non-linear cases

Find 

by minimizing               

subject to constraints:

for i = 1,…,N.
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Find 

by minimizing               

subject to constraints:

for i = 1,…,N.
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Linear case Non-linear case 
(use “kernel trick”)
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More about one-class SVM

• One-class SVMs inherit most of properties of SVMs for 
binary classification (e.g., “kernel trick”, sample 
efficiency, ease of finding of a solution by efficient 
optimization method, etc.);

• The choice of other parameter     significantly affects 
the resulting decision surface.

• The choice of origin is arbitrary and also significantly 
affects the decision surface returned by the algorithm.

ν



Support vector clustering
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Contributed by Nikita Lytkin



Goal of clustering (aka class discovery)

Given a heterogeneous set of data points

Assign labels such that points 
with the same label are highly “similar“ to each other 
and are distinctly different from the rest

109

n
N Rxxx ∈
 ,...,, 21

},...,2,1{,...,, 21 Kyyy N ∈

Clustering process



Support vector domain description
• Support Vector Domain Description (SVDD) of the data is 

a set of vectors lying on the surface of the smallest 
hyper-sphere enclosing all data points in a feature space
– These surface points are called Support Vectors

110

kernel

Φ
R R

R



SVDD optimization criterion
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Minimize                 subject to                                           for i = 1,…,N2R

Squared radius of the sphere Constraints

22||)(|| Raxi ≤−Φ

Formulation with hard constraints:

R R

R
'R a

'a



Main idea behind Support Vector 
Clustering

• Cluster boundaries in the input space are formed by the set of 
points that when mapped from the input space to the feature 
space fall exactly on the surface of the minimal enclosing 
hyper-sphere
– SVs identified by SVDD are a subset of the cluster boundary points

112

1−Φ
R R

Ra



Cluster assignment in SVC

• Two points    and    belong to the same cluster (i.e., have 
the same label) if every point of the line segment          
projected to the feature space lies within the hyper-
sphere

113

Φ R R

Ra

Every point is within the hyper-
sphere in the feature space

Some points lie outside the 
hyper-sphere

),( ji xx
ix jx



Cluster assignment in SVC (continued)

• Point-wise adjacency matrix is 
constructed by testing the line 
segments between every pair of 
points

• Connected components are 
extracted

• Points belonging to the same 
connected component are 
assigned the same label

114

A B C D E

A 1 1 1 0 0

B 1 1 0 0

C 1 0 0

D 1 1

E 1

A
B

C

D

E

A
B

C

D

E



Effects of noise and cluster overlap

• In practice, data often contains noise, outlier points and 
overlapping clusters, which would prevent contour 
separation and result in all points being assigned to the 
same cluster

115

Ideal data Typical data

Noise

Outliers
Overlap



SVDD with soft constraints

• SVC can be used on noisy data by allowing a fraction of points, 
called Bounded SVs (BSV), to lie outside the hyper-sphere
– BSVs are not considered as cluster boundary points and are not 

assigned to clusters by SVC

116

kernel

Φ
R R

R

Overlap

a

Typical data

Noise

Outliers
Overlap

Noise
Outliers



Soft SVDD optimization criterion
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Minimize subject to for i = 1,…,N2R

Squared radius of the sphere Soft constraints

ii Rax ξ+≤−Φ 22||)(||

Primal formulation with soft constraints:

0≥iξ

R R

Overlap

aiR ξ+

Introduction of slack 
variables      mitigates 
the influence of noise 
and overlap on the 
clustering process

iξ Noise

Outliers



• Gaussian kernel tends to yield tighter 
contour representations of clusters than the polynomial kernel

• The Gaussian kernel width parameter influences tightness of 
cluster boundaries, number of SVs and the number of clusters

• Increasing     causes an increase in the number of clusters

Dual formulation of soft SVDD

118

Minimize

subject to for i = 1,…,N

∑∑ −=
ji

jiji
i

iii xxKxxKW
,

),(),( βββ

Constraints

Ci ≤≤ β0

)exp(),(
2

jiji xxxxK 
−−= γ

• As before, denotes a kernel function

• Parameter gives a trade-off between volume of the sphere and 
the number of errors (C=1 corresponds to hard constraints)

)()(),( jiji xxxxK Φ⋅Φ=

10 ≤< C

0>γ

γ



SVM-based variable selection
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Recall standard SVM formulation:

Find      and     that minimize

subject to 

for i = 1,…,N.

Use classifier:

• The weight vector      contains as many elements as there are input 
variables in the dataset, i.e.               .

• The magnitude of each element denotes importance of the 
corresponding variable for classification task.
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Understanding the weight vector w

Positive instances (y=+1)Negative instances (y=-1)

0=+⋅ bxw 
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Understanding the weight vector w

x1

x2 011
)1,1(

21 =++
=

bxx
w

x1

x2 001
)0,1(

21 =++
=

bxx
w

x1

x2
010

)1,0(

21 =++
=

bxx
w

x2

x1

x3

0011
)0,1,1(

321 =+++
=

bxxx
w

X1 and X2 are equally important X1 is important, X2 is not

X2 is important, X1 is not

X1 and X2 are 
equally important, 
X3 is not 
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Understanding the weight vector w

Gene X1

Gene X2 Melanoma
Nevi

X1

PhenotypeX2

SVM decision surface

011
)1,1(

21 =++
=

bxx
w

Decision surface of 
another classifier

001
)0,1(

21 =++
=

bxx
w

True model

• In the true model, X1 is causal and X2 is redundant
•SVM decision surface implies that X1 and X2 are equally 
important; thus it is locally causally inconsistent

•There exists a causally consistent decision surface for this example
•Causal discovery algorithms can identify that X1 is causal and X2 is redundant



123

Simple SVM-based variable selection 
algorithm

Algorithm:
1. Train SVM classifier using data for all variables to 

estimate vector  
2. Rank each variable based on the magnitude of the 

corresponding element in vector 
3. Using the above ranking of variables, select the 

smallest nested subset of variables that achieves the 
best SVM prediction accuracy.

w

w
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Simple SVM-based variable selection 
algorithm

Consider that we have 7 variables: X1, X2, X3, X4, X5, X6, X7
The vector     is: (0.1, 0.3, 0.4, 0.01, 0.9, -0.99, 0.2)
The ranking of variables is: X6, X5, X3, X2, X7, X1, X4

Subset of variables
Classification

accuracy

X6 X5 X3 X2 X7 X1 X4 0.920

X6 X5 X3 X2 X7 X1 0.920

X6 X5 X3 X2 X7 0.919

X6 X5 X3 X2 0.852

X6 X5 X3 0.843

X6 X5 0.832

X6 0.821

Best classification accuracy

Classification accuracy that is 
statistically indistinguishable 
from the best one

 Select the following variable subset: X6, X5, X3, X2 , X7

w
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Simple SVM-based variable selection 
algorithm

• SVM weights are not locally causally consistent  we 
may end up with a variable subset that is not causal 
and not necessarily the most compact one.

• The magnitude of a variable in vector       estimates 
the effect of removing that variable on the objective 
function of SVM (e.g., function that we want to 
minimize). However, this algorithm becomes sub-
optimal when considering effect of removing several 
variables at a time… This pitfall is addressed in the 
SVM-RFE algorithm that is presented next.

w
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SVM-RFE variable selection algorithm
Algorithm:
1. Initialize V to all variables in the data
2. Repeat
3. Train SVM classifier using data for variables in V to 

estimate vector  
4. Estimate prediction accuracy of variables in V using 

the above SVM classifier (e.g., by cross-validation)
5. Remove from V a variable (or a subset of variables) 

with the smallest magnitude of the corresponding 
element in vector 

6. Until there are no variables in V
7. Select the smallest subset of variables with the best 

prediction accuracy

w

w
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SVM-RFE variable selection algorithm

10,000 
genes

SVM 
model

Prediction 
accuracy

5,000 
genes

5,000 
genes

Important for 
classification

Not important 
for classification

SVM 
model

2,500 
genes

2,500 
genes

Important for 
classification

Not important 
for classification

Discarded Discarded

…
Prediction 
accuracy

• Unlike simple SVM-based variable selection algorithm, SVM-
RFE estimates vector      many times to establish ranking of the 
variables.

• Notice that the prediction accuracy should be estimated at 
each step in an unbiased fashion, e.g. by cross-validation.

w
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SVM variable selection in feature space

The real power of SVMs comes with application of the kernel 
trick that maps data to a much higher dimensional space 
(“feature space”) where the data is linearly separable.

Gene 2

Gene 1

Tumor

Normal

Tumor

Normal?

?kernel

Φ

input space feature space
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SVM variable selection in feature space
• We have data for 100 SNPs (X1,…,X100) and some phenotype.
• We allow up to 3rd order interactions, e.g. we consider: 

• X1,…,X100
• X1

2,X1X2, X1X3,…,X1X100 ,…,X100
2

• X1
3,X1X2X3, X1X2X4,…,X1X99X100 ,…,X100

3

• Task: find the smallest subset of features (either SNPs or 
their interactions) that achieves the best predictive 
accuracy of the phenotype.

• Challenge: If we have limited sample, we cannot explicitly 
construct and evaluate all SNPs and their interactions 
(176,851 features in total) as it is done in classical statistics.
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SVM variable selection in feature space

Heuristic solution: Apply algorithm SVM-FSMB that:
1. Uses SVMs with polynomial kernel of degree 3 and 

selects M features (not necessarily input variables!) 
that have largest weights in the feature space. 

E.g., the algorithm can select features like: X10, 
(X1X2), (X9X2X22), (X7

2X98), and so on.

2. Apply HITON-MB Markov blanket algorithm to find 
the Markov blanket of the phenotype using M 
features from step 1.



Computing posterior class 
probabilities for SVM classifiers

131
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Output of SVM classifier
1. SVMs output a class label 

(positive or negative) for each 
sample:

2. One can also compute distance 
from the hyperplane that 
separates classes, e.g.              . 
These distances can be used to 
compute performance metrics 
like area under ROC curve.

Positive samples (y=+1)Negative samples (y=-1)

0=+⋅ bxw 

)( bxwsign +⋅


bxw +⋅


Question: How can one use SVMs to estimate posterior 
class probabilities, i.e., P(class positive | sample x)?
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Simple binning method

Training set

Validation set

Testing set

1. Train SVM classifier in the Training set.

2. Apply it to the Validation set and compute distances 
from the hyperplane to each sample.

3. Create a histogram with Q (e.g., say 10) bins using the 
above distances. Each bin has an upper and lower 
value in terms of distance.

Sample # 1 2 3 4 5
...

98 99 100

Distance 2 -1 8 3 4 -2 0.3 0.8
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Simple binning method

Training set

Validation set

Testing set

4. Given a new sample from the Testing set, place it in 
the corresponding bin.

E.g., sample #382 has distance to hyperplane = 1, so it 
is placed in the bin [0, 2.5]

5. Compute probability P(positive class | sample #382) as 
a fraction of true positives in this bin.

E.g., this bin has 22 samples (from the Validation set), 
out of which 17 are true positive ones , so we compute
P(positive class | sample #382) = 17/22 = 0.77
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Platt’s method
Convert distances output by SVM to probabilities by passing them 
through the sigmoid filter:

where d is the distance from hyperplane and A and B are parameters.

)exp(1
1)|(

BAd
sampleclasspositiveP

++
=
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Platt’s method

Training set

Validation set

Testing set

1. Train SVM classifier in the Training set.

2. Apply it to the Validation set and compute distances 
from the hyperplane to each sample.

3. Determine parameters A and B of the sigmoid 
function by minimizing the negative log likelihood of 
the data from the Validation set.

4. Given a new sample from the Testing set,  compute its 
posterior probability using sigmoid function.

Sample # 1 2 3 4 5
...

98 99 100

Distance 2 -1 8 3 4 -2 0.3 0.8



Part 3

• Case studies (taken from our research)
1. Classification of cancer gene expression microarray data
2. Text categorization in biomedicine
3. Prediction of clinical laboratory values
4. Modeling clinical judgment
5. Using SVMs for feature selection
6. Outlier detection in ovarian cancer proteomics data

• Software

• Conclusions

• Bibliography
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1. Classification of cancer gene 
expression microarray data

138
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Comprehensive evaluation of algorithms 
for classification of cancer microarray data

Main goals:
• Find the best performing decision support 

algorithms for cancer diagnosis from 
microarray gene expression data;

• Investigate benefits of using gene selection 
and ensemble classification methods.
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Classifiers

• K-Nearest Neighbors (KNN)

• Backpropagation Neural Networks (NN)

• Probabilistic Neural Networks (PNN)

• Multi-Class SVM: One-Versus-Rest (OVR)

• Multi-Class SVM: One-Versus-One (OVO)

• Multi-Class SVM: DAGSVM

• Multi-Class SVM by Weston & Watkins (WW)

• Multi-Class SVM by Crammer & Singer (CS)

• Weighted Voting: One-Versus-Rest

• Weighted Voting: One-Versus-One

• Decision Trees: CART

kernel-based

neural 
networks

voting

decision trees

instance-based
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Ensemble classifiers

Ensemble 
Classifier

Final
Prediction

dataset

Classifier 1 Classifier 2 Classifier N…

Prediction 1 Prediction 2 Prediction N… dataset
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Gene selection methods

1. Signal-to-noise (S2N) ratio in 
one-versus-rest (OVR) 
fashion;

2. Signal-to-noise (S2N) ratio in 
one-versus-one (OVO) 
fashion;

3. Kruskal-Wallis nonparametric  
one-way ANOVA (KW);

4. Ratio of genes between-
categories to within-category 
sum of squares (BW).

genes

Uninformative genes
Highly discriminatory genes
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Performance metrics and
statistical comparison

1. Accuracy
+ can compare to previous studies
+ easy to interpret & simplifies statistical comparison

2. Relative classifier information (RCI)
+ easy to interpret & simplifies statistical comparison
+ not sensitive to distribution of classes
+ accounts for difficulty of a decision problem

• Randomized permutation testing to compare accuracies 
of the classifiers (α=0.05)
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Microarray datasets

Total:
•~1300 samples
•74 diagnostic categories
•41 cancer types and 
12 normal tissue types

Sam- 
ples

Variables 
(genes)

Cate- 
gories

11_Tumors 174 12533 11 Su, 2001

14_Tumors 308 15009 26 Ramaswamy, 2001

9_Tumors 60 5726 9 Staunton, 2001

Brain_Tumor1 90 5920 5 Pomeroy, 2002

Brain_Tumor2 50 10367 4 Nutt, 2003

Leukemia1 72 5327 3 Golub, 1999

Leukemia2 72 11225 3 Armstrong, 2002

Lung_Cancer 203 12600 5 Bhattacherjee, 2001

SRBCT 83 2308 4 Khan, 2001

Prostate_Tumor 102 10509 2 Singh, 2002

DLBCL 77 5469 2 Shipp, 2002

Dataset name
Number of

Reference
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Summary of methods and datasets

S2N One-Versus-Rest

S2N One-Versus-One

Non-param. ANOVA

BW ratio

Gene Selection
Methods (4)

Cross-Validation
Designs (2)

10-Fold CV

LOOCV

Accuracy

RCI

Performance
Metrics (2)

One-Versus-Rest

One-Versus-One

DAGSVM

Method by WW

Classifiers (11)

Method by CS

KNN

Backprop. NN

Prob. NN

Decision Trees

One-Versus-Rest

One-Versus-One

M
C-

SV
M

W
V

Majority Voting

MC-SVM OVR

MC-SVM OVO

MC-SVM DAGSVM

Ensemble Classifiers (7)

Decision Trees

Decision Trees
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Results with gene selection

OVR OVO DAGSVM WW CS KNN NN PNN
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SVM non-SVM

Improvement of diagnostic 
performance by gene selection 
(averages for the four datasets)

Average reduction of genes is 10-30 times

Diagnostic performance 
before and after gene selection
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Comparison with previously 
published results
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Summary of results

• Multi-class SVMs are the best family among the 
tested algorithms outperforming KNN, NN, PNN, DT, 
and WV.

• Gene selection in some cases improves classification 
performance of all classifiers, especially of non-SVM 
algorithms;

• Ensemble classification does not improve 
performance of SVM and other classifiers;

• Results obtained by SVMs favorably compare with the 
literature.



• Appealing properties
– Work when # of predictors > # of samples

– Embedded gene selection

– Incorporate interactions

– Based on theory of ensemble learning

– Can work with binary & multiclass tasks

– Does not require much fine-tuning of parameters

• Strong theoretical claims

• Empirical evidence: (Diaz-Uriarte and Alvarez de 
Andres, BMC Bioinformatics, 2006) reported 
superior classification performance of RFs compared 
to SVMs and other methods

150

Random Forest (RF) classifiers



Key principles of RF classifiers

Training
data

2) Random gene
selection

3) Fit unpruned 
decision trees

4) Apply to testing data & 
combine predictions

Testing
data

1) Generate 
bootstrap 
samples
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Results without gene selection

152

• SVMs nominally outperform RFs is 15 datasets, RFs outperform SVMs in 4 datasets, 
algorithms are exactly the same in 3 datasets.

• In 7 datasets SVMs outperform RFs statistically significantly.
• On average, the performance advantage of SVMs is 0.033 AUC and 0.057 RCI.



Results with gene selection
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• SVMs nominally outperform RFs is 17 datasets, RFs outperform SVMs in 3 datasets, 
algorithms are exactly the same in 2 datasets.

• In 1 dataset SVMs outperform RFs statistically significantly.
• On average, the performance advantage of SVMs is 0.028 AUC and 0.047 RCI.



2. Text categorization in biomedicine
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Models to categorize content and quality: 
Main idea

155

1. Utilize existing (or easy to build) training corpora

1

2

3

4

2. Simple document 
representations (i.e., typically 
 stemmed and weighted 
words in title and abstract, 
Mesh terms if available; 
occasionally addition of 
Metamap CUIs, author info) as 
“bag-of-words”



Models to categorize content and quality: 
Main idea
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Labeled
Examples

Unseen 
Examples

Labeled

3. Train SVM models that capture 
implicit categories of meaning or 
quality criteria

5. Evaluate performance prospectively & 
compare to prior cross-validation estimates

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Txmt Diag Prog Etio

Estimated Performance 2005 Performance

4. Evaluate models’ performances 
- with nested cross-validation or other 

appropriate error estimators
- use primarily AUC as well as  other metrics 

(sensitivity, specificity, PPV, Precision/Recall 
curves, HIT curves, etc.)



Models to categorize content and quality: 
Some notable results
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1. SVM models have 
excellent ability to identify 
high-quality PubMed 
documents according to 
ACPJ gold standard

Category Average AUC Range
over n folds

Treatment 0.97* 0.96 - 0.98

Etiology 0.94* 0.89 – 0.95

Prognosis 0.95* 0.92 – 0.97

Diagnosis 0.95* 0.93 - 0.98

Category Average AUC Range
over n folds

Treatment 0.97* 0.96 - 0.98

Etiology 0.94* 0.89 – 0.95

Prognosis 0.95* 0.92 – 0.97

Diagnosis 0.95* 0.93 - 0.98

Method Treatment -
AUC

Etiology -
AUC

Prognosis -
AUC

Diagnosis -
AUC

Google Pagerank 0.54 0.54 0.43 0.46

Yahoo Webranks 0.56 0.49 0.52 0.52

Impact Factor 
2005

0.67 0.62 0.51 0.52

Web page hit 
count

0.63 0.63 0.58 0.57

Bibliometric 
Citation Count

0.76 0.69 0.67 0.60

Machine Learning 
Models

0.96 0.95 0.95 0.95

Method Treatment -
AUC

Etiology -
AUC

Prognosis -
AUC

Diagnosis -
AUC

Google Pagerank 0.54 0.54 0.43 0.46

Yahoo Webranks 0.56 0.49 0.52 0.52

Impact Factor 
2005

0.67 0.62 0.51 0.52

Web page hit 
count

0.63 0.63 0.58 0.57

Bibliometric 
Citation Count

0.76 0.69 0.67 0.60

Machine Learning 
Models

0.96 0.95 0.95 0.95

2. SVM models have better classification 
performance than PageRank, Yahoo ranks, 
Impact Factor, Web Page hit counts, and 
bibliometric citation counts on the Web 
according to ACPJ gold standard



Models to categorize content and quality: 
Some notable results
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3. SVM models have better 
classification performance than 
PageRank, Impact Factor and 
Citation count in Medline for 
SSOAB gold standard 

Gold standard: SSOAB Area under the ROC 
curve*

SSOAB-specific  filters 0.893

Citation Count 0.791

ACPJ Txmt-specific filters 0.548

Impact Factor (2001) 0.549

Impact Factor (2005) 0.558

Gold standard: SSOAB Area under the ROC 
curve*

SSOAB-specific  filters 0.893

Citation Count 0.791

ACPJ Txmt-specific filters 0.548

Impact Factor (2001) 0.549

Impact Factor (2005) 0.558
Diagnosis - Fixed Specificity

0.65
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0.97
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1
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Treatment - Fixed Specificity

0.8
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Etiology - Fixed Specificity

0.68

0.910.94 0.91

0
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0.3
0.4
0.5
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0.44
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0.75
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0.9
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Query Filters Learning Models

4. SVM models have better sensitivity/specificity in PubMed than CQFs  at 
comparable thresholds according to ACPJ gold standard



Other applications of SVMs to text 
categorization

159

1. Identifying Web Pages with  misleading treatment information according 
to special purpose gold standard (Quack Watch). SVM models outperform 
Quackometer and Google ranks in the tested domain of cancer treatment.

Model Area Under the 
Curve

Machine Learning Models 0.93

Quackometer* 0.67

Google 0.63

Model Area Under the 
Curve

Machine Learning Models 0.93

Quackometer* 0.67

Google 0.63

2. Prediction of future paper citation counts (work of L. Fu and C.F. Aliferis, 
AMIA 2008)



3. Prediction of clinical laboratory 
values

160



Dataset generation and 
experimental design

Training Testing
Validation 

(25% of Training)

01/1998-05/2001 06/2001-10/2002

• StarPanel database contains ~8·106 lab measurements of ~100,000 in-
patients from Vanderbilt University Medical Center. 

• Lab measurements were taken between 01/1998 and 10/2002.

For each combination of lab test and normal range, we generated
the following datasets. 
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Query-based approach for 
prediction of clinical cab values

Train SVM classifier

Training data

Data model

Validation data

database

These steps are performed 
for every data model

Performance

Prediction

Testing data

Testing 
sample

Optimal
data modelSVM classifier

These steps are performed 
for every testing sample
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Classification results

Area under ROC curve (without feature selection)

>1 <99 [1, 99] >2.5 <97.5 [2.5, 97.5]
BUN 80.4% 99.1% 76.6% 87.1% 98.2% 70.7%

Ca 72.8% 93.4% 55.6% 81.4% 81.4% 63.4%

CaIo 74.1% 60.0% 50.1% 64.7% 72.3% 57.7%

CO2 82.0% 93.6% 59.8% 84.4% 94.5% 56.3%

Creat 62.8% 97.7% 89.1% 91.5% 98.1% 87.7%
Mg 56.9% 70.0% 49.1% 58.6% 76.9% 59.1%

Osmol 50.9% 60.8% 60.8% 91.0% 90.5% 68.0%

PCV 74.9% 99.2% 66.3% 80.9% 80.6% 67.1%

Phos 74.5% 93.6% 64.4% 71.7% 92.2% 69.7%

La
bo

ra
to

ry
 te

st

Range of normal values

>1 <99 [1, 99] >2.5 <97.5 [2.5, 97.5]
BUN 75.9% 93.4% 68.5% 81.8% 92.2% 66.9%
Ca 67.5% 80.4% 55.0% 77.4% 70.8% 60.0%

CaIo 63.5% 52.9% 58.8% 46.4% 66.3% 58.7%
CO2 77.3% 88.0% 53.4% 77.5% 90.5% 58.1%
Creat 62.2% 88.4% 83.5% 88.4% 94.9% 83.8%

Mg 58.4% 71.8% 64.2% 67.0% 72.5% 62.1%
Osmol 77.9% 64.8% 65.2% 79.2% 82.4% 71.5%
PCV 62.3% 91.6% 69.7% 76.5% 84.6% 70.2%
Phos 70.8% 75.4% 60.4% 68.0% 81.8% 65.9%

Range of normal values

La
bo

ra
to

ry
 te

st

Area under ROC curve (without feature selection)

Including cases with K=0 (i.e. samples
with no prior lab measurements)

Excluding cases with K=0 (i.e. samples
with no prior lab measurements)

A total of 84,240 SVM classifiers were built for 16,848 possible data models.

163



Improving predictive power and parsimony 
of a BUN model using feature selection

Test name BUN
Range of normal values < 99 perc.
Data modeling SRT
Number of previous 
measurements

5

Use variables corresponding to 
hospitalization units?

Yes

Number of prior 
hospitalizations used 2

Model description

N samples 
(total)

N abnormal 
samples

N 
variables

Training set 3749 78

Validation set 1251 27

Testing set 836 16

3442

Dataset description
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3
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Classification performance (area under ROC curve)

 All RFE_Linear RFE_Poly HITON_PC HITON_MB
Validation set 95.29% 98.78% 98.76% 99.12% 98.90%
Testing set 94.72% 99.66% 99.63% 99.16% 99.05%
Number of features 3442 26 3 11 17
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Classification performance (area under ROC curve)

 All RFE_Linear RFE_Poly HITON_PC HITON_MB
Validation set 95.29% 98.78% 98.76% 99.12% 98.90%
Testing set 94.72% 99.66% 99.63% 99.16% 99.05%
Number of features 3442 26 3 11 17

Features
1  LAB: PM_1(BUN) LAB: PM_1(BUN) LAB: PM_1(BUN) LAB: PM_1(BUN)
2  LAB: PM_2(Cl) LAB: Indicator(PM_1(Mg)) LAB: PM_5(Creat) LAB: PM_5(Creat)

3  LAB: DT(PM_3(K))
LAB: Test Unit 
NO_TEST_MEASUREMENT 
(Test CaIo, PM 1)

LAB: PM_1(Phos) LAB: PM_3(PCV)

4  LAB: DT(PM_3(Creat))  LAB: Indicator(PM_1(BUN)) LAB: PM_1(Mg)

5  LAB: Test Unit J018 (Test Ca, PM 3)  LAB: Indicator(PM_5(Creat)) LAB: PM_1(Phos)

6  LAB: DT(PM_4(Cl))  LAB: Indicator(PM_1(Mg)) LAB: Indicator(PM_4(Creat))

7  LAB: DT(PM_3(Mg))  LAB: DT(PM_4(Creat)) LAB: Indicator(PM_5(Creat))

8  LAB: PM_1(Cl)  LAB: Test Unit 7SCC (Test Ca, PM 1) LAB: Indicator(PM_3(PCV))

9  LAB: PM_3(Gluc)  LAB: Test Unit RADR (Test Ca, PM 5) LAB: Indicator(PM_1(Phos))

10  LAB: DT(PM_1(CO2))  LAB: Test Unit 7SMI (Test PCV, PM 4) LAB: DT(PM_4(Creat))

11  LAB: DT(PM_4(Gluc))  DEMO: Gender LAB: Test Unit 11NM (Test BUN, PM 2)

12  LAB: PM_3(Mg)   LAB: Test Unit 7SCC (Test Ca, PM 1)

13  LAB: DT(PM_5(Mg))   LAB: Test Unit RADR (Test Ca, PM 5)

14  LAB: PM_1(PCV)   LAB: Test Unit 7SMI (Test PCV, PM 4)

15  LAB: PM_2(BUN)   LAB: Test Unit CCL (Test Phos, PM 1)

16  LAB: Test Unit 11NM (Test PCV, PM 2)   DEMO: Gender

17  LAB: Test Unit 7SCC (Test Mg, PM 3)   DEMO: Age

18  LAB: DT(PM_2(Phos))    

19  LAB: DT(PM_3(CO2))    

20  LAB: DT(PM_2(Gluc))    

21  LAB: DT(PM_5(CaIo))    

22  DEMO: Hospitalization Unit TVOS    

23  LAB: PM_1(Phos)    

24  LAB: PM_2(Phos)    

25  LAB: Test Unit 11NM (Test K, PM 5)    

26  LAB: Test Unit VHR (Test CaIo, PM 1)    
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4. Modeling clinical judgment
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Methodological framework and study 
outline

same across physicians different across physicians

Ph
ys

ic
ia

n 1
Ph

ys
ic

ia
n 6

Patient Feature
Clinical

Diagnosis
Gold 

Standard

1 f1…fm cd1 hd1

… … …
N cdN hdN

… … … …
1 f1…fm cd1 hd1

… … …

N cdN hdN

Patients

Physicians

Guidelines

Predict clinical decisions

Identify predictors 
ignored by 
physicians

Explain each physician’s 
diagnostic model

Compare physicians with each 
other and with guidelines



Clinical context of experiment

Incidence & mortality have been constantly increasing in 
the last decades.

Malignant melanoma is the most dangerous form of skin cancer



Physicians and patients

Dermatologists  N = 6

3 experts - 3 non-experts

Patients  N=177 
76 melanomas - 101 nevi

Features

Lesion 
location

Family history of 
melanoma Irregular Border Streaks (radial 

streaming, pseudopods)

Max-diameter Fitzpatrick’s 
Photo-type Number of colors Slate-blue veil

Min-diameter Sunburn Atypical pigmented 
network Whitish veil

Evolution Ephelis Abrupt network cut-off Globular elements

Age Lentigos Regression-Erythema Comedo-like openings, 
milia-like cysts

Gender Asymmetry Hypo-pigmentation Telangiectasia

Data collection:

Patients seen prospectively, 
from 1999 to 2002 at 
Department of Dermatology, 
S.Chiara Hospital, Trento, Italy

inclusion criteria: histological 
diagnosis and >1 digital image 
available

Diagnoses made in 2004



Method to explain physician-specific
SVM models

Build 
SVM

SVM
”Black Box”

Build 
DT

Regular Learning Meta-Learning 

Apply SVM

FS



Results: Predicting physicians’ judgments

Physicians All
(features)

HITON_PC
(features)

HITON_MB
(features)

RFE
(features)

Expert 1 0.94 (24) 0.92 (4) 0.92 (5) 0.95 (14)

Expert 2 0.92 (24) 0.89 (7) 0.90 (7) 0.90 (12)

Expert 3 0.98 (24) 0.95 (4) 0.95 (4) 0.97 (19)

NonExpert 1 0.92 (24) 0.89 (5) 0.89 (6) 0.90 (22)

NonExpert 2 1.00 (24) 0.99 (6) 0.99 (6) 0.98 (11)

NonExpert 3 0.89 (24) 0.89 (4) 0.89 (6) 0.87 (10)



Results: Physician-specific models



Results: Explaining physician agreement

Expert 1 
AUC=0.92  
R2=99%

Expert 3
AUC=0.95  
R2=99%

Blue 
veil irregular border streaks

Patient 001 yes no yes



Results: Explain physician disagreement
Blue 
veil

irregular 
border streaks number 

of colors evolution

Patient 002 no no yes 3 no

Expert 1 
AUC=0.92  
R2=99%

Expert 3
AUC=0.95  
R2=99%



Results: Guideline compliance

Physician Reported 
guidelines

Compliance

Experts1,2,3,  
non-expert 1 Pattern analysis 

Non-compliant: they ignore the 
majority of features (17 to 20) 
recommended by pattern analysis.

Non expert 2 ABCDE rule Non compliant: asymmetry, irregular 
border and evolution are ignored.

Non expert 3
Non-standard. 
Reports using 7 
features

Non compliant: 2 out of 7 reported 
features are ignored while some non-
reported ones are not

On the contrary: In all guidelines, the more predictors present, 
the higher the likelihood of melanoma. All physicians were 
compliant with this principle.



5. Using SVMs for feature selection
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Feature selection methods

177

Feature selection methods (non-causal)
• SVM-RFE
• Univariate + wrapper
• Random forest-based
• LARS-Elastic Net
• RELIEF + wrapper
• L0-norm
• Forward stepwise feature selection
• No feature selection

Causal feature selection methods
• HITON-PC
• HITON-MB
• IAMB
• BLCD
• K2MB
…

This method outputs a 
Markov blanket of the 
response variable 
(under assumptions)

This is an SVM-based 
feature selection 
method



13 real datasets were used to evaluate 
feature selection methods

178

Dataset name Domain Number of 
variables

Number of 
samples Target Data type

Infant_Mortality Clinical 86 5,337 Died within the first year discrete

Ohsumed Text 14,373 5,000 Relevant to nenonatal diseases continuous

ACPJ_Etiology Text 28,228 15,779 Relevant to eitology continuous

Lymphoma Gene 
expression 7,399 227 3-year survival: dead vs. alive continuous

Gisette Digit 
recognition 5,000 7,000 Separate 4 from 9 continuous

Dexter Text 19,999 600 Relevant to corporate acquisitions continuous

Sylva Ecology 216 14,394 Ponderosa pine vs. everything else continuous & discrete

Ovarian_Cancer Proteomics 2,190 216 Cancer vs. normals continuous

Thrombin Drug 
discovery 139,351 2,543 Binding to thromin discrete (binary)

Breast_Cancer Gene 
expression 17,816 286 Estrogen-receptor positive (ER+) vs. ER- continuous

Hiva Drug 
discovery 1,617 4,229 Activity to AIDS HIV infection discrete (binary)

Nova Text 16,969 1,929 Separate politics from religion topics discrete (binary)

Bankruptcy Financial 147 7,063 Personal bankruptcy continuous & discrete



Classification performance vs. proportion 
of selected features
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Statistical comparison of predictivity and 
reduction of features

180

Predicitivity Reduction

P-value Nominal winner P-value Nominal winner

SVM-RFE
(4 variants)

0.9754 SVM-RFE 0.0046 HITON-PC

0.8030 SVM-RFE 0.0042 HITON-PC

0.1312 HITON-PC 0.3634 HITON-PC

0.1008 HITON-PC 0.6816 SVM-RFE

• Null hypothesis: SVM-RFE and HITON-PC perform the same;
• Use permutation-based statistical test with alpha = 0.05.



Simulated datasets with known causal 
structure used to compare algorithms
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Comparison of SVM-RFE and HITON-PC



Comparison of all methods in terms of 
causal graph distance
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SVM-RFE HITON-PC 
based 
causal 

methods



Summary results

184SVM-RFE

HITON-PC 
based 
causal 

methods

HITON-PC-
FDR 

methods



Statistical comparison of graph distance

185

Sample size = 
200

Sample size = 
500

Sample size =
5000

Comparison P-value Nominal 
winner P-value Nominal 

winner P-value Nominal 
winner

average HITON-PC-FDR
with G2 test vs. average 
SVM-RFE

<0.0001 HITON-PC-
FDR 0.0028 HITON-PC-

FDR <0.0001 HITON-PC-
FDR

• Null hypothesis: SVM-RFE and HITON-PC-FDR perform the same;
• Use permutation-based statistical test with alpha = 0.05.



6. Outlier detection in ovarian cancer 
proteomics data
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Data Set 1 (Top), Data Set 2 (Bottom)

Cancer

Normal

Other 

Clock Tick
4000 8000 12000

Cancer

Normal

Other 

Ovarian cancer data

Same set of 216 
patients, obtained 
using the Ciphergen
H4 ProteinChip
array (dataset 1) 
and using the 
Ciphergen WCX2 
ProteinChip array
(dataset 2).

The gross break at the “benign disease” juncture in dataset 1 and the similarity of the 
profiles to those in dataset 2 suggest change of protocol in the middle of the first 
experiment.



Experiments with one-class SVM
Assume that sets {A, B} are 
normal and {C, D, E, F} are 
outliers. Also, assume that we 
do not know what are normal 
and outlier samples.

•Experiment 1: Train one-class SVM 
on {A, B, C} and test on {A, B, C}: 
Area under ROC curve = 0.98

•Experiment 2: Train one-class SVM 
on {A, C} and test on {B, D, E, F}: 
Area under ROC curve = 0.98

Data Set 1 (Top), Data Set 2 (Bottom)

Cancer

Normal

Other 

Clock Tick
4000 8000 12000

Cancer

Normal

Other 
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Software
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Interactive media and animations
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SVM Applets
• http://www.csie.ntu.edu.tw/~cjlin/libsvm/
• http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
• http://www.smartlab.dibe.unige.it/Files/sw/Applet%20SVM/svmapplet.html
• http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
• http://www.dsl-lab.org/svm_tutorial/demo.html (requires Java 3D)

Animations
• Support Vector Machines:

http://www.cs.ust.hk/irproj/Regularization%20Path/svmKernelpath/2moons.avi
http://www.cs.ust.hk/irproj/Regularization%20Path/svmKernelpath/2Gauss.avi
http://www.youtube.com/watch?v=3liCbRZPrZA

• Support Vector Regression: 
http://www.cs.ust.hk/irproj/Regularization%20Path/movie/ga0.5lam1.avi

http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml�
http://www.smartlab.dibe.unige.it/Files/sw/Applet SVM/svmapplet.html�
http://www.smartlab.dibe.unige.it/Files/sw/Applet SVM/svmapplet.html�
http://www.dsl-lab.org/svm_tutorial/demo.html�
http://www.smartlab.dibe.unige.it/Files/sw/Applet SVM/svmapplet.html�
http://www.cs.ust.hk/irproj/Regularization Path/svmKernelpath/2moons.avi�
http://www.cs.ust.hk/irproj/Regularization Path/svmKernelpath/2Gauss.avi�
http://www.youtube.com/watch?v=3liCbRZPrZA�
http://www.cs.ust.hk/irproj/Regularization Path/movie/ga0.5lam1.avi�


Several SVM implementations for 
beginners
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• GEMS: http://www.gems-system.org

• Weka: http://www.cs.waikato.ac.nz/ml/weka/

• Spider (for Matlab): http://www.kyb.mpg.de/bs/people/spider/

• CLOP (for Matlab): http://clopinet.com/CLOP/

http://www.gems-system.org/�
http://www.cs.waikato.ac.nz/ml/weka/�
http://www.kyb.mpg.de/bs/people/spider/�
http://clopinet.com/CLOP/�


Several SVM implementations for 
intermediate users
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•LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 General purpose
 Implements binary SVM, multiclass SVM, SVR, one-class SVM
 Command-line interface
 Code/interface for C/C++/C#, Java, Matlab, R, Python, Pearl

•SVMLight: http://svmlight.joachims.org/
 General purpose (designed for text categorization)
 Implements binary SVM, multiclass SVM, SVR
 Command-line interface
 Code/interface for C/C++, Java, Matlab, Python, Pearl

More software links at http://www.support-vector-machines.org/SVM_soft.html
and http://www.kernel-machines.org/software

http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://svmlight.joachims.org/�
http://www.support-vector-machines.org/SVM_soft.html�
http://www.kernel-machines.org/software�


Conclusions
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Strong points of SVM-based learning 
methods

• Empirically achieve excellent results in high-dimensional data 
with very few samples

• Internal capacity control to avoid overfitting
• Can learn both simple linear and very complex nonlinear 

functions by using “kernel trick”
• Robust to outliers and noise (use “slack variables”)
• Convex QP optimization problem (thus, it has global minimum 

and can be solved efficiently)
• Solution is defined only by a small subset of training points 

(“support vectors”)
• Number of free parameters is bounded by the number of 

support vectors and not by the number of variables
• Do not require direct access to data, work only with dot-

products of data-points.
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Weak points of SVM-based learning 
methods

• Measures of uncertainty of parameters are not 
currently well-developed

• Interpretation is less straightforward than classical 
statistics

• Lack of parametric statistical significance tests
• Power size analysis and research design considerations 

are less developed than for classical statistics
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Thank you for your attention!
Questions/Comments?

Email: Alexander.Statnikov@med.nyu.edu

URL: http://ww.nyuinformatics.org
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