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Abstract

Single-cell RNA-sequencing (scRNA-seq) has been widely used to depict gene expression profiles at the single-cell resolution. However,
its relatively high dropout rate often results in artificial zero expressions of genes and therefore compromised reliability of results.
To overcome such unwanted sparsity of scRNA-seq data, several imputation algorithms have been developed to recover the single-
cell expression profiles. Here, we propose a novel approach, GE-Impute, to impute the dropout zeros in scRNA-seq data with graph
embedding-based neural network model. GE-Impute learns the neural graph representation for each cell and reconstructs the cell–cell
similarity network accordingly, which enables better imputation of dropout zeros based on the more accurately allocated neighbors
in the similarity network. Gene expression correlation analysis between true expression data and simulated dropout data suggests
significantly better performance of GE-Impute on recovering dropout zeros for both droplet- and plated-based scRNA-seq data. GE-
Impute also outperforms other imputation methods in identifying differentially expressed genes and improving the unsupervised
clustering on datasets from various scRNA-seq techniques. Moreover, GE-Impute enhances the identification of marker genes,
facilitating the cell type assignment of clusters. In trajectory analysis, GE-Impute improves time-course scRNA-seq data analysis and
reconstructing differentiation trajectory. The above results together demonstrate that GE-Impute could be a useful method to recover
the single-cell expression profiles, thus enabling better biological interpretation of scRNA-seq data. GE-Impute is implemented in
Python and is freely available at https://github.com/wxbCaterpillar/GE-Impute.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) has emerged
as a powerful technique to characterize cellular hetero-
geneity, advancing our understanding of human disease
by measuring gene expression and transcriptome states
at the single-cell resolution [1–3]. Based on the protocols
for single-cell library generation, the methods for scRNA-
seq can be summarized into two categories: 1) the plate-
based methods, which sort one single cell into one well of
multiple-well plate, such as Fluidigm C1 [4] and Smart-
Seq2 [5]; 2) the droplet-based methods, which distribute
each cell into a tiny droplet containing reagents and a
specific barcode to uniquely quantify the transcriptome,
such as 10x Genomics [6]. The plate-based methods are
often of lower throughput but higher sensitivity that
enables the detection of more genes for each cell, while
the droplet-based are of higher throughput but lower
sensitivity in comparison with the plate-based methods.
Despite rapid growth in the scale and robustness of
the scRNA-seq protocols, drop-out events (i.e. missed
detection of gene expression which results in artificial
zero expressions of many genes) in scRNA-seq data
have remained as the major obstacle in downstream
functional analysis for either plate- or droplet-based

scRNA-seq methods [7, 8]. Therefore, it is necessary to
develop efficient algorithms to overcome this unwanted
sparsity in single-cell expression matrix and recover the
incomplete expression profiles.

Recently, several computational methods have been
established to impute the dropout zeros in scRNA-seq
data. Generally, these computational methods can be
categorized into three classes [9]. The first class con-
sists of methods that focus on smoothing all expression
values among the cells with similar expression profiles,
such as MAGIC [10], kNN-smoothing [11] and DrImpute
[12]. MAGIC imputes the dropout values of the scRNA-
seq count matrix through data diffusion across similar
cells. kNN-smoothing reconstructs the count matrix for
each cell by smoothing the expression values of its k-
nearest neighbors. DrImpute first performs cell cluster-
ing to identify similar cells and further imputes data
by averaging the expression values from similar cells.
The second class of methods reconstructs the expression
matrix from the latent spaces estimated by low-rank
matrix-based methods or deep-learning methods, like
WEDGE [13], scScope [14], DeepImpute [15], scVI [16] and
scGNN [17]. WEDGE is a recently proposed algorithm
to impute gene expression matrix by using biased low-
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rank matrix decomposition method. scScope is a deep-
learning-based method that employs a recurrent net-
work layer to iteratively impute scRNA-seq data matrix.
DeepImpute and scVI both apply a deep neural network
to learn expression patterns of the scRNA-seq data, thus
allowing for fast imputation of missing values. scGNN is
a graph neural network-based imputation method which
learns cell–cell relationships in the graph autoencoder.
The third class of methods models the sparsity using
probabilistic models, such as SAVER [18]. SAVER imputes
the gene expression of cells by estimating prior param-
eters for an empirical Bayes-like method with Poisson
least absolute shrinkage and selection operator (LASSO)
regression model.

It is noteworthy that there are multiple aspects when
assessing the performance of an imputation method.
First, the primary objective of the scRNA-seq imputation
methods is to recover the real expression profiles.
Since there is no golden-standard single-cell expression
matrix, one alternative approach is to randomly mask
non-zero expression values to simulate the dropout
zeros in scRNA-seq datasets and assess the similarity
between imputation data and true background data.
Moreover, there are several important tasks when
analyzing scRNA-seq data, including identification of
differentially expressed genes, unsupervised clustering
of cells, marker genes-based cell-type annotation and
trajectory analysis. Therefore, how one imputation
method could facilitate these downstream analysis tasks
is also of prominent biological significance. One recent
benchmarking study [19] has systematically evaluated
the imputation methods for recovering biological signals
in downstream analysis. In this evaluation, MAGIC,
SAVER and kNN-smoothing have outperformed other
imputation methods in denoising scRNA-seq data.
Nonetheless, the ability of these methods to improve
the quality of analysis in all aspects is still lacking.
Therefore, more robust methods should be developed to
improve the feasibility of data analysis while preserving
the original information of single-cell data as much as
possible.

Here, we propose a new method, GE-Impute, to impute
singe-cell data matrix based on cell–cell similarity links
predicted by graph embedding neural network. We first
constructed a raw cell–cell similarity network (graph)
and embedded all cells into low-dimension vectors using
biased random walks and skip-gram model [20, 21]. After
training feature embeddings, the new links between cells
were predicted based on the embedded low-dimension
features to obtain a reconstructed cell–cell similarity net-
work. Finally, dropout zero values for each cell were esti-
mated by smoothing the expression values of all neigh-
bors in the reconstructed cell–cell similarity network.
We applied GE-Impute on computer-simulated, droplet-
and plate-based scRNA-seq data and compared it with
other nine state-of-the-art methods, including MAGIC
[10], kNN-smoothing [11], DrImpute [12], WEDGE [13],
scScope [14], DeepImpute [15], scVI [16], scGNN [17] and

SAVER [18], and found GE-Impute outperformed other
imputation methods across multiple evaluations on data
quality and analysis feasibility. Sections below will firstly
describe the method framework of GE-Impute, and then
provide the detailed performance evaluation results.

Methods
The design of GE-Impute pipeline
Graph embedding (or graph representation learning)
emerges as a promising technique in various machine
learning tasks, such as node classification, link pre-
diction and community detection [22]. In recent years,
the graph embedding method has been further applied
to several important biological issues. For example,
Zhao et al. [23] performed graph embedding on a
heterogeneous network to predict novel drug-disease
associations. Zhang et al. [24] utilized a deep learning
model of graph convolution network and graph factor-
ization to predict the potential association of circRNA
and disease. In this study, we applied node2vec [21] graph
embedding algorithm which simultaneously considering
breadth-first sampling (BFS) and depth-first sampling
(DFS) search strategies for random walks sampling.
The skip-gram model is a neural network to create a
word vector and is widely used in natural language
processing. We further applied skip-gram model to
learn continuous feature representations for cells
in the raw cell–cell similarity network based on the
sampling walks. Since there are multiple effective graph
representation learning methods, to test if other models
work better than node2vec, we have also tried four other
commonly used graph embedding methods including
DeepWalk [22], LINE [25], Struct2vec [26] and Snore
[27]. We compared the Pearson correlation coefficients
calculated by different models using 10x Genomics cell
lines dataset (see sections below) and found node2vec
performs best in missing values recovering analysis
(Supplementary Figure 1A). To further evaluate the
accuracy of new links predicted by different methods
in the cell–cell similarity network, we calculated the
ratio of true links (i.e. links within the same cell type)
to total predicted links (Supplementary Figure 1B). The
result shows that node2vec and DeepWalk predict 100%
links of the same cell type while other methods may
predict the false links (i.e. links between the different
cell types). Since DeepWalk has taken more time and
memory cost than node2vec when learning feature
representation. We have decided to select node2vec as
the graph representation learning neural network model
to develop our imputation task. Taking advantage of
the node2vec algorithm, GE-Impute mapped cells into
a low-dimension space and maximized the likelihood
of co-occurrence of their neighbors in network. The
similarities among cells could be re-calculated from
low-dimension feature representations to predict new
link-neighbors for the cells and reconstruct cell–cell
similarity network. Finally, imputation for scRNA-seq
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Figure 1. Overall workflow of GE-Impute algorithm pipeline. GE-Impute constructs a raw cell–cell similarity network based on Euclidean distance. For
each cell, it simulates a random walk of fixed length using BFS and DFS strategy. Next, graph embedding-based neural network model was employed to
train the embedding matrix for each cell based on sampling walks. The similarity among cells could be re-calculated from embedding matrix to predict
new link-neighbors for the cells and reconstruct cell–cell similarity network. Finally, GE-Impute imputes the dropout zeros for each cell by averaging
the expression value of its neighbors in reconstructed similarity network.

expression data matrix was implemented based on the
reconstructed cell–cell similarity network. The workflow
of GE-Impute is summarized in Figure 1.

More specifically, we firstly normalized the raw scRNA-
seq count matrix using Freeman-Tukey transform to
reduce the technical variance.

Y = √
X + √

X + 1

where X denotes raw expression value and Y represents
normalized value. The Freeman-Tukey transform [28]
was proposed to stabilize the variance of Poisson-
distributed variables and was verified to outperform
the regular logarithm transcript per million (log-TPM)
transform when calculating cell–cell distance [11]. The
Euclidean distances between cells were calculated and
adjacency matrix of raw cell–cell similarity network was
established based on the k nearest neighbors (KNN) of

each cell:

Wij = Wji =
{

0
1

Ci /∈ KNN
(
Cj

)
and Cj /∈ KNN (Ci)

Ci ∈ KNN
(
Cj

)
or Cj ∈ KNN (Ci)

As for the sampling strategy, the biased random
walk was used to explore the neighbors considering
both breadth-first and depth-first sampling strategy
(Figure 1). Let G = (V, E) be the raw cell–cell similarity
network. Given a source node u, the IMi was defined
as the ith intermediate cell in sampling walks of given
length L, the transition probability is defined as follows:

P
(
IMi = x | IMi−1 = v

) =
{ wvx

Z , if (v, x) ∈ E
0, otherwise
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where wvx denotes transition probability between cell v
and cell x, and Z is the normalizing constant. To achieve
moderate sampling strategy, two parameters p and q
were used to calculate the bias of walk. Let t be the upper
cell of v and suppose walks just traversed edge (t, v). From
t to x, the α is defined as follows:

αpq (t, x) =
⎧⎨
⎩

1/p if dtx = 0
1 if dtx = 1

1/q if dtx = 2

where the wvx = αpq and dtx denotes the distance between
cell t and cell x. The values p and q control the bias of
walks. If p > 1, the walk strategy is biased toward search-
ing cells away from t. If p < 1, the walk strategy is biased
toward revisiting t. If q > 1, the walks strategy is biased
toward breadth-first sampling. If q < 1, the walks strategy
is biased toward depth-first sampling. By default, p and q
are set to 0.25 and 4, respectively, according to the prelim-
inary optimization. After sampling walks from similarity
network, GE-Impute trained features representation for
each cell using skip-gram model (Figure 1). The model
aims to optimize the following objective function:

max
S

∑
u∈V

log Pr
(
Ng(u) | S(u)

)

where S(u) is the mapping function from cells to feature
representations, Ng(u) is defined as the neighborhood set
of node u deriving from sampling function g. To make this
optimization solvable, the assumptions of conditional
independence and symmetry in feature space were pro-
posed, which could simplify the objective function [29] as
follows:

max
S

∑
u∈V

⎡
⎣−logZu +

∑
vi∈Ng(u)

S (vi) • S(u)

⎤
⎦ ,

where Zu =
∑
w∈V

eS(u)·S(w)

The learning features were used to predict new links
and therefore reconstruct cell–cell similarity network. In
a detailed manner, for one cell i, the distances to all
linked cells were calculated. Let Ei represent the num-
ber of its neighbor links with other cells in the initial
adjacency matrix W. We ranked the distance scores in
ascending order and the top Ei neighbors of cell i were
described as ‘features-related neighbors’ (Nfeature). By fur-
ther combining with W, a union of neighbor links of cell i
was used to impute its dropout values. For a specific gene
y that got 0 value in the raw expression data matrix, GE-
Impute filled it by averaging the expression data of gene
y in its neighbors:

Expression
(
Cy=0

i

)
= average

{
Expression

(
Cy

n

)}

where Cn ∈ Nfeature ∪ Vj
(
Wi,j = 1

)

To demonstrate the improvement of GE-Impute by
the graph neural network model, we compared the
performance of GE-Impute with the original similarity
network derived from KNN algorithm as well as the raw
features from node2vec. The result shows that the raw
KNN similarity network or the raw learning features
obtained by node2vec individually cannot perform
as well as GE-Impute in missing values recovering
analysis on either 10x Genomics dataset or Fludigm
C1 dataset (Supplementary Figure 2). Moreover, to test if
exclusion outlier cells when averaging expression values
would help improve the imputation performance. The
interquartile range metric (IQR) is used to define outlier
cells. Instead of averaging all the similar cells, the cells
whose expression levels are more than Median + 1.5∗IQR
or less than Median - 1.5∗IQR are removed and the
average expression value is calculated by the remain-
ing cells. However, we cannot observe a significant
improvement in the missing value recovering analysis
(Supplementary Figure 3). Therefore, to simplify the
algorithm, we did not consider adding this procedure
to our imputation model.

For parameter setting in GE-Impute, we have run an
optimization for p (i.e. the bias of walks), q (i.e. the bias
of walks), L (i.e. the length of each random walk), NW (i.e.
the number of random walks) and WS (i.e. the window
size). For p and q, different combinations of values (range
of 0.25, 0.5, 1, 2, 4) are used to explore the most suit-
able combination of p and q (Supplementary Table 1). For
parameters L, NW and WS, we calculate performance in
missing value recovering analysis when considering dif-
ferent range of values (Supplementary Table 1). Accord-
ing to the optimization results, we have determined the
values of those parameters in GE-Impute model, with
p = 0.25, q = 4, L = 5, NW = 20, WS = 3.

Dataset collection and imputation
The scRNA-seq and bulk RNA-seq datasets used to
test the performance of GE-Impute are summarized
in Supplementary Table 2. Notably, these datasets have
been commonly used in previous studies and have
proved to be effective for imputation methods bench-
marking [19, 30]. To comprehensively evaluate the
performance of GE-Impute for different scRNA-seq
protocols, we considered datasets from droplet-based
methods (e.g. 10x Genomics) and plate-based methods
(e.g. Fluidigm C1 and Smart-Seq2). Several datasets were
used to perform missing value recovering analysis and
differentially expressed gene identification, including a
10x Genomics scRNA-seq data of five cell lines (i.e. A549,
H1975, H2228, H838 and HCC828) [31] and a Fluidigm
C1 scRNA-seq data of five cell lines (i.e. A549, GM12878,
H1, K562 and IMR90) [32]. For the 10x Genomics scRNA-
seq data, the corresponding bulk RNA-seq data including
A549, H1975, H2228, H838 and HCC828 was downloaded
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from GEO database [33], and for the Fluidigm C1 scRNA-
seq data, the corresponding bulk RNA-seq data including
A549, GM12878, H1, K562 and IMR90 was downloaded
from ENCODE database [34] (Supplementary Table 2).
One dataset containing six cell types of peripheral blood
mononuclear cells (PBMC) [6] from 10x Genomics and
one dataset including four conventional dendritic cell
subtypes from Smart-Seq2 [35] were utilized to perform
clustering analysis and marker genes visualization. One
dataset which contains 1529 cells from five stages of
human preimplantation embryonic development from
E3 to E7 was used to perform trajectory analysis [36].
In addition to experimentally derived datasets, we also
considered several scRNA-seq datasets simulated by
splatSimulate function in Splatter R package [37]. One
dataset including five cell groups without dropout rate
was simulated to perform missing value recovering
analysis and two other datasets with batch effects
were simulated to evaluate batch effect benchmark. For
scRNA-seq data, only cells with at least 500 detected
genes were retained and genes that expressed at least
10% of cells were retained to ensure the quality of data.
We compared GE-Impute with several extensively used
imputation methods, including DeepImpute, DrImpute,
MAGIC, kNN-smoothing, SAVER, scGNN, scScope, scVI
and WEDGE. All methods were implemented in R version
4.0.3 or Python version 3.8.8 with respective default
parameters.

Comparison of imputation methods for dropout
zero recovering and differentially expressed gene
identification
To evaluate our imputation method for recovering the
dropout zeros in scRNA-seq data, the similarity between
imputation data and true background data was calcu-
lated based on Pearson correlation analysis. Firstly, we
randomly mask 10%, 20% and 30% of non-zero values for
each cell in 10x Genomics dataset, Fluidigm C1 dataset
and Splatter-generated dataset to simulate the dropout
events in scRNA-seq data. After imputation for the sim-
ulated dropout data, the raw data and imputed data
are both adjusted for library size with NormalizeData
function in Seurat 4.0 R package. The Pearson correlation
coefficients for each cell between imputation data and
true background data were calculated. To test the ability
of GE-Impute on capturing and identifying differentially
expressed genes (DEGs) among different cell states, we
regarded DEGs identified by bulk RNA-seq data as the
‘gold standard’ gene set following the idea of the previous
benchmarking [19]. We first identified DEGs between all
pairs of cell types for bulk RNA-seq data using pack-
age DESeq2 [38] in R version 4.0.3. Genes with absolute
value of log2-fold change >1 and adjusted P-value <0.05
were retained and considered as ‘gold standard’ DEGs
sets from bulk data. For each pair of cell types in the
(imputed) scRNA-seq data, the Seurat normalized log2-
transformed expression profiles were used to identify

DEGs. We applied the Wilcoxon Rank-Sum test [39] to cal-
culate P-value for all genes and further corrected them
using Benjamini-Hochberg method. Genes with absolute
value of log2-fold change >0.5 or 1 and FDR < 0.05 were
identified as the single-cell DEG sets. To evaluate the
similarity between bulk-derived gold-standard DEGs and
single-cell DEGs, the Jaccard index [40] was used to mea-
sure the amount of overlap between these two gene sets
and was defined as follows:

Jaccard (B, S) = |B ∩ S|
|B ∪ S|

where the B and S denote bulk-derived gold standard
DEGs and single-cell DEGs, respectively.

Evaluation of GE-Impute for unsupervised
clustering of cells
To investigate whether GE-Impute can outperform other
methods in improving clustering of cells that belong
to the same cell type or subtypes, we considered two
datasets from 10x Genomics and Smart-Seq2 platform,
respectively. The 10x Genomics dataset contains 61,213
sorted PBMCs [6] including CD14+ monocytes, CD19+
B cells, CD34+ cells, CD4+ T cells and CD8+ cytotoxic T
cells; while the Smart-Seq2 dataset contains 957 conven-
tional dendritic cells [35] with four predefined subtypes
(i.e. blood pre-cDCs, cord pre-cDCs, CD141+ cDC and
CD1c + cDC). We employed Seurat 4.0 pipeline [41], the
most commonly used scRNA-seq data analysis pipeline,
to perform cell clustering for the imputed expression
matrix of each method. Briefly, the expression profiles
were first normalized using NormalizeData function
with default parameters. Then highly variant genes were
identified using FindVariableGenes function and scaled
by ScaleData function. The top 30 significant principal
components were selected to perform Louvain clus-
tering using FindNeighbors function and FindClusters
function. For a comparable configuration, we adjusted
the resolution parameter of FindClusters function until
the number of clusters reaches the same number of
the predefined cell types or subtypes. For different
imputation methods, the expression characteristics of
imputed data are different, so their final resolutions
to get the same number of clusters are also different.
The exact resolution parameters of clustering for each
method are summarized in Supplementary Table 4.

Purity, Adjust Rand Index (ARI) and Normalized
Mutual Information (NMI) are commonly used indices
to compare clustering results against known labels.
Therefore, the cluster labels and known cell (sub)type
labels were employed to evaluate the performance of
imputation method in improving unsupervised cluster-
ing. The Purity was defined as the percent of the total
number of cells that were classified correctly and was
implemented by purity function in NMF package [42]. Let
K be the number of clusters inferring by N cells, Pi be the
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cluster i and Tj be the true cell (sub)type j. Formally:

Purity (P, T) = 1
N

K∑
i=1

maxj

∣∣Pi ∩ Tj

∣∣

The Adjust Rand Index aims to calculate similarity
measure between two clustering results by counting
pairs of cells that are assigned to the same or different
clusters in the predicted and true clustering results:

ARI (P, T) =
∑

i,j

(
Nij
2

)
−

[∑
i

( Ni
2

) ∑
j

(
Nj
2

)] /(
N
2

)

1
2

[∑
i

( Ni
2

)
+ ∑

j

(
Nj
2

)]
−

[∑
i

( Ni
2

)∑
j

(
Nj
2

)] /(
N
2

)

where Nij denotes the number of cells of the cell type
label Tj assigned to cluster Pi. Ni is the number of cells
in cluster Pi, while Nj is the number of cells in cell type
Tj. The ARI was calculated using the adjustedRandIndex
function in mclust package [43]. The Normalized Mutual
Information (NMI) is also a good measure for estimating
clustering quality and is implemented by NMI function in
aricode package (https://github.com/jchiquet/aricode).
Let L be the number of true cell (sub)type labels and the
NMI is defined as:

NMI (P, T) =
∑L

i=1

∑K
j=1Nij log

N•Nij
Ni•Nj

max
(

−∑L
i=1Ni • log

Ni
N , −∑K

j=1Nj • log
Nj
N

)

where the numerator denotes the mutual information
between P and T and the denominator denotes the
entropy of P and T.

Results
GE-Impute shows effective improvement in
recovering missing value in scRNA-seq data
To evaluate the ability of GE-Impute in imputing the
missing value of scRNA-seq expression data, nine
other state-of-the-art imputation methods including
DeepImpute, MAGIC, kNN-smoothing, SAVER, scGNN,
scVI and WEDGE, DrImpute and scScope were used to
perform comparison analysis. Three datasets generated
from droplet-based (10x Genomics), plate-based (Flu-
idigm C1) and Splatter-generated protocols are used to
systematically evaluate the performance of GE-Impute
on various scRNA-seq data. We simulated the dropout
events in scRNA-seq data by randomly masking 10%,
20% and 30% of non-zero values for each cell. The
three simulated dropout datasets were first imputed to
follow each method’s guideline (see Methods). Pearson
correlation coefficients (PCCs) between true background
data and imputation data were calculated to measure
the difference, where larger PCCs indicate the better
performance of the imputation method. As shown in
Figure 2, GE-Impute has shown excellent performance in
recovering the missing value and provides higher PCCs
than any other methods in all cell lines (groups) of three

datasets. We observed that DrImpute performed better
on 10x Genomics dataset imputation than on Fluidigm
C1 and simulated dataset, while DeepImpute performed
better on Fluidigm C1 and simulated dataset than on
10x Genomics dataset, indicating these two methods are
applicable to scRNA-seq data from different protocols.
We also found that several methods show more compro-
mised performance in missing value imputation such
as scGNN and scScope. scGNN utilized the imputation
autoencoder and pre-processed matrix to recover gene
expression matrix which may lead to an exaggerated
deviation between raw data matrix and imputation data
matrix. scScope allows the recurrent network layer to
perform imputation on dropout entries iteratively, which
may overcorrect the raw expression data. Overall, GE-
Impute can successfully recover missing value in scRNA-
seq data and obtain an imputed matrix similar to real
data matrix.

GE-Impute promotes correct identification of
differentially expressed genes in downstream
analysis
One of the important tasks in scRNA-seq downstream
analysis is to identify cell type-specific DEGs under vari-
ous conditions [44] (i.e. healthy versus disease samples).
Through DEG analysis, one can further explore which
biological pathways related to the variation between cells
under different conditions. Therefore, accurate acquisi-
tion of DEGs in the context of dropout noises is one
of the hallmarks to demonstrate the biological signifi-
cance of imputation results. Here, considering the higher
sensitivity of bulk RNA-seq technology in detecting dif-
ferential expression at the transcriptome scale, DEGs
that were calculated based on bulk RNA-seq data were
treated as the “gold standard”. The DEGs of bulk RNA-
seq and scRNA-seq data were determined following the
method described above (see Methods). Also, we com-
pared GE-Impute with other imputation methods for
capturing DEGs of bulk RNA-seq. The Jaccard index was
used to measure the overlap between DEGs from scRNA-
seq data and bulk RNA-seq data. We also measured the
performance of raw data (no imputation) in identify-
ing DEGs of bulk RNA-seq as the baseline. As a result,
GE-Impute can significantly improve the performance
of DEGs identification compared with other imputation
methods as well as the no imputation baseline when
considering different fold change thresholds (Figure 3
and Supplementary Figure 4). In 10x Genomics dataset,
GE-Impute can improve the identification of DEGs in all
pairs of cell types compared with no imputation baseline.
While kNN-smoothing and DrImpute can only improve
several pairs of cell types. In Fluidigm C1 dataset, in
addition to GE-Impute, scVI can also facilitate DEGs iden-
tification compared with the no imputation baseline.
Since the identification of DEGs has a great impact on
downstream analysis, it is crucial to reduce false pos-
itives and false negatives due to the technical noises.
In our results, GE-Impute can significantly promote the
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Figure 2. Performance comparison of GE-Impute with other imputation methods in recovering missing values in scRNA-seq data. The barplot shows a
comparison of Pearson correlation coefficients between real and imputed expression profiles between different imputation methods on 10x Genomics
dataset (A), Fluidigm C1 dataset (B) and simulated dataset (C), respectively. Different colors represent different imputation methods and each cell line
is grouped accordingly.

identification of DEGs from bulk RNA-seq, indicating its
potential in single cell RNA-seq analysis.

GE-Impute significantly improves the
performance of unsupervised clustering of cells
Unsupervised clustering is essential for defining cell type
heterogeneity and cell type annotation in scRNA-seq
data analysis [45]. Mapping unbiased clusters to known
cell types is one of the commonly used methods for cell
type annotation, thus the clustering result would directly
affect the accuracy of downstream interpretation [46].
Accordingly, we used the standard Seurat pipeline
to cluster cells, and compared GE-Impute with other
imputation methods on improving the performance of
unsupervised clustering (see Methods). In this part of
analysis, the known cell types or cell subtypes were
regarded as the true labels and the clustering results
were treated as predicted labels. Three indices were
introduced to evaluate the consistency between the
true and predicted labels, including Purity, ARI and NMI
(see Methods). We first explored the effect of GE-Impute
on droplet-based 10x Genomic PBMC dataset including
CD14+ monocytes, CD19+ B cells, CD34+ cells, CD56+
cells, CD4+ T cells and CD8+ /cytotoxic T cells. The
clustering results were visualized by uniform manifold
approximation and projection (UMAP) method. In the
result of no imputation data, several CD8 T cells (Cluster
1) are dispersedly distributed on UMAP plot and show

prominent discrepancy between unsupervised clustering
labels and true cell types labels (Figure 4A). Whereas
in GE-Impute imputation’s UMAP plot, the same cell
types are more cohesively distributed and show better
consistency between unsupervised clustering results
and true cell types labels (Figure 4B). The Cluster 1
and Cluster 5 are dominated by CD8 T cells and CD4
T cells, respectively, though they distribute very closely
to each other on UMAP plot. Moreover, the clustering
results of all imputation methods on 10x Genomics
data were quantitatively evaluated using the above-
mentioned three indices (Figure 4C and Table 1). In
general, most imputation methods can improve the
unsupervised clustering compared with no imputation
(Purity = 0.757, ARI = 0.563, NMI = 0.674), except kNN-
smoothing (Purity = 0.809, ARI = 0.425, NMI = 0.552) and
scScope (Purity = 0.755, ARI = 0.578, NMI = 0.649) which
show reduced performance for one or more indices. The
result also shows that GE-Impute could achieve the best
clustering accuracies among all imputation methods,
with Purity = 0.972, ARI = 0.936 and NMI = 0.894. Mean-
while, WEDGE (Purity = 0.968, ARI = 0.927, NMI = 0.886)
and DrImpute (Purity = 0.965, ARI = 0.899, NMI = 0.854)
also performed well in improving the clustering accuracy,
although their performances in missing value recovering
and differential gene identification are not such satisfac-
tory, suggesting these methods are particularly suitable
for cell clustering analysis. The clustering accuracy can
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8 | Wu and Zhou

Figure 3. Comparison of different imputation methods on identifying differential expressed genes in 10x Genomics dataset and Fluidigm C1 dataset.
Heatmap showing the value of Jaccard index between bulk (as the golden standard) and single-cell DEGs (log2-fold change >0.5) on the 10x Genomics
dataset (A) and Fluidigm C1 dataset (B), respectively. Each row represents pair of cell types and each column represents an imputation method.

also be intuitively reflected by the UMAP plots. For
example, in the clustering results of DeepImpute, MAGIC,
SAVER, scGNN, scScope and scVI, a substantial fraction of
CD4 T cells were wrongly assigned to the clusters of CD8
T cells, while kNN-smoothing showed a more dispersed
distribution of clusters in UMAP plot, suggesting that
this algorithm significantly changed the cell clustering
topology.

In comparison with droplet-based scRNA-seq method
like 10x Genomics, plated-based scRNA-seq platform like
Smart-Seq2 often results in an scRNA-seq dataset with
much fewer cells and therefore more challenging for

clustering analysis. Here, a Smart-Seq2 dataset which
contains four dendritic cell subtypes was introduced
for the clustering accuracy assessment. Similar to the
aforementioned method, we treated the clustering
results as predicted labels and the known cell sub-
types as true labels. Notably, GE-Impute (Purity = 0.727,
ARI = 0.272, NMI = 0.391) showed better clustering accu-
racy than the raw data (Purity = 0.601, ARI = 0.147,
NMI = 0.343) and other nine imputation methods for
nearly all cases except the NMI index of DrImpute
(Supplementary Figure 5 and Table 1). DrImpute (Purity
= 0.704, ARI = 0.205, NMI = 0.440) performed well in
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Figure 4. Performance comparison of unsupervised clustering on 10x Genomics PBMC dataset. The UMAP plot showing unsupervised clustering of
PBMC raw data (A) or GE-Impute data (B). The left subpanel represents clusters information of unsupervised clustering. The right sub-panel presents
the known cell type labels information. Each color represents a cell type. (C) Unsupervised clustering for other imputation methods. The upper sub-panel
represents the unsupervised clustering information and the lower sub-panel represents the known cell labels. Intuitively, higher consistency between
clustering labels and known cell type labels indicates a better cell clustering result.

both 10x Genomics dataset and Smart-Seq2 dataset,
which would be attributed to its cell clustering-based
expression imputation nature that enhances the intra-
cluster expression homogeneity [12]. On the other hand,
DeepImpute, MAGIC, scGNN, scVI and WEDGE could
not perform as well on Smart-Seq2 dataset as they did
on 10x Genomics dataset, suggesting these methods
were not the recommended choice for performing
clustering analysis of plated-based scRNA-seq data. In

all, GE-Impute can significantly improve the clustering
analysis accuracy of scRNA-seq data and make the
expression characteristics of different cell types more
straightforward, no matter on droplet- or plate-based
scRNA-seq datasets.

Batch effect is common when analyzing scRNA-seq
dataset and emerges as an obstacle in downstream
analysis. Therefore, effective batch correction is vital
in scRNA-seq data analysis. To investigate if GE-Impute
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Table 1. Performance comparison of different imputation with
multiple clustering evaluation indices

Index Purity ARI NMI

10x Genomics_PBMC dataset
GE-Impute 0.972 0.936 0.894
DeepImpute 0.874 0.666 0.801
DrImpute 0.965 0.899 0.854
kNN-smoothing 0.809 0.425 0.552
MAGIC 0.865 0.657 0.794
SAVER 0.866 0.651 0.772
scGNN 0.865 0.522 0.701
scScope 0.755 0.578 0.649
scVI 0.874 0.664 0.802
WEDGE 0.968 0.927 0.886
Raw 0.757 0.563 0.674

Smart-Seq2_cDC dataset
GE-Impute 0.727 0.272 0.391
DeepImpute 0.596 0.095 0.250
DrImpute 0.704 0.205 0.440
kNN-smoothing 0.587 0.147 0.211
MAGIC 0.581 0.029 0.240
SAVER 0.615 0.157 0.332
scGNN 0.575 0.061 0.223
scScope 0.531 0.028 0.032
scVI 0.527 0.029 0.207
WEDGE 0.553 0.120 0.222
Raw 0.601 0.147 0.343

affects the batch effect benchmarks in scRNA-seq
data analysis, we applied FindIntegrationAnchors and
IntegrateData function of Seurat 4.0 R package to
perform batch correction and evaluate the performance
of raw and imputed data. We have considered both
experimentally derived [6] and Splatter-simulated [37]
datasets with different batches (Supplementary Figure 6
and Supplementary Table 2). The performance was
evaluated using local inverse Simpson’s index (LISI) [47]
and adjusted rand index (ARI) [48]. LISI and ARI are two
commonly used metrics to measure batch mixing. A
higher LISI indicates superior batch correction while a
low ARI denotes superior batch mixing. The result shows
that GE-Impute does not significantly affect the batch
correction of scRNA-seq dataset. LISI and ARI calculated
by GE-Impute data are almost equivalent to the raw non-
imputed data (Supplementary Table 5).

GE-Impute enhances the identification and
visualization of cell type marker genes
To investigate whether GE-impute could help facilitate
cell type annotation through enhancing cell type marker
genes expression, we used Seurat package [41] to identify
the expression of several key marker genes. We first
explored the expression of CD14 (marker gene for CD14+
cells) and CD8A (marker gene for CD8+ T cells) in
10x_Genomics PBMC raw data (Figure 5A). As the result
shown in violin plot, the CD14 was identified as marker
gene in Cluster 5 while CD8A was not significantly
enriched in any clusters, and their expression signatures
were not obvious in the feature plot. After GE-Impute
processing, both CD14 and CD8A were found to be

stably expressed in CD14+ cell cluster and CD8+ T cell
cluster, respectively (Figure 5B). The feature plot shows
that the expression characteristic of these two marker
genes is also more distinguishable between different
clusters. Furthermore, the expression of several other
marker genes is found to be enhanced after GE-Impute
processing, such as CD1C marker for CD19+ B cell,
GZMH and PTGD5 markers for CD56+ NK cell, EGFL7
maker for CD34+ cell, and CORO1B maker for CD4+ T
cell (Figure 5C). In addition to 10x Genomics dataset,
we also observed significantly elevated expression of
marker genes in dendritic cell subtypes in scRNA-
seq data from Smart-Seq2, such as GBP1 for blood
pre-cDC, CCL23 for cord pre-cDCs, PPY and ERICH5
for CD1c + dendritic cells (Supplementary Figure 7).
Although there are many outstanding methods and
software available to automatically annotate cell types
[49–51], clear expression of marker genes is still an
essential feature for cell annotation in scRNA-seq data
analysis [52]. These results suggest that GE-Impute can
help identify cell types for scRNA-seq data by enhancing
the expression of marker genes, thereby improving the
efficiency of cell type annotation analysis.

GE-Impute improves the performance of cell
trajectory inference
Trajectory analysis is also one of the important tasks
in scRNA-seq data analysis. To evaluate if GE-Impute
can improve the accuracy of trajectory inference and
pseudotime ordering, we utilized a dataset containing
1529 cells from five stages of human preimplantation
embryonic development from E3 to E7 [36]. We applied
GE-Impute and other nine imputation methods to the
raw data and then reconstructed the trajectory using
SlingShot R package [53]. The results demonstrate that
GE-Impute can improve cell trajectory reconstruction
compared to the raw data in both t-SNE and UMAP
reduction plots (Figure 6A and Supplementary Figure 8).
Besides GE-Impute, some other imputation methods (but
not all the methods) can also help to reconstruct the
cell trajectory such as DrImpute, SAVER and scGNN in t-
SNE plot. Whereas in UMAP reduction plot, MAGIC, scVI
and WEDGE can also improve the trajectory inference but
DrImpute fails to reconstruct the trajectory. To quantita-
tively compare their performance in improving the accu-
racy of pseudotime inference, the consistency between
the true-time labels (i.e. E3 to E7) and pseudotime order-
ing was measured by the Pearson correlation coefficients.
Two widely used methods, SlingShot [53] and PAGA [54],
were used to predict the pseudotime labels. We found
GE-Impute outperforms other methods in pseudotime
inference when the analysis was conducted by SlingShot,
and it ranks only second to scGNN when using PAGA.
While the pseudotime ordering of imputed data from
MAGIC and kNN-smoothing cannot be inferred by PAGA,
suggesting these two methods overcorrect the transcrip-
tome dynamics along the time course. In summary, these
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Figure 5. GE-Impute facilitates identification of marker genes in specific cell types. Feature plot and violin plot showing CD14 (top panel) and CD8A
(lower panel) expression in (A) raw 10x_PBMC data or (B) GEImpute 10x_PBMC data. CD14 is the marker for CD14+ cell type and CD8A is the marker for
CD8+ T cell type. (C) Violin plot showing several marker genes for specific cell types in raw (top red panel) and GEImpute 10x_PBMC data (lower purple
panel), including CD1C (marker for CD19+ B cell), GZMH and PTGDS (marker for CD56+ NK cell), EGFL7 (marker for CD34+ stem cell), CORO1B (marker
for CD4+ T cell).

results demonstrate that GE-Impute can improve the
performance of pseudotime inference.

Time and memory cost evaluation
To evaluate the efficiency of GE-Impute and other impu-
tation algorithms, we have counted the time and peak
memory usage when imputing the aforementioned 10x
Genomics scRNA-seq data of five cell lines (containing
3817 cells and 11 786 genes). We found GE-Impute only
cost 39 s and 2242 MiB memory to finish the imputation
work (Supplementary Figure 9A), which was comparable
to kNN-smoothing and MAGIC methods. Moreover, we
applied GE-Impute to impute datasets of various sizes,
ranging in size from 5 k to 50 k cells, which were sampled
from 10x Genomics PBMC dataset. The computational
cost of GE-Impute is at a moderate level among all the
methods (Supplementary Figure 9B and C), which indi-
cates its effectiveness in imputation task.

Discussion
Compared with bulk RNA-seq, the dropout events are
much more prevalent in scRNA-seq, resulting in a non-
negligible impact on the accuracy of scRNA-seq analy-
sis results. Generally, there are two approaches to solve
this issue. The first is to capture more transcripts in
scRNA-seq by improving the sensitivity of sequencing
platform, such as switching to the plate-based platforms
like Fluidigm C1 and Smart-Seq2. However, the cost per
sample of these plate-based methods is much higher
than droplet-based method, and the library preparation
of plate-based protocols is very complex. Besides, as also
shown by the above analysis, plate-based scRNA-seq data
are also more challenging for downstream cell cluster-
ing analysis. Therefore, another promising solution is
to develop new bioinformatics methods to handle the
sparsity and technical noises in scRNA-seq data, where
the simplest and most effective way is to impute the
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Figure 6. GE-Impute enhances the inference of cell trajectory. The trajectories reconstructed by SlingShot from raw and imputed scRNA-seq data (A).
Each color represents a specific time point. The barplot shows a comparison of Pearson correlation coefficients between true-time points and predicted
pseudotime labels which were calculated by SlingShot (B) and PAGA (C).

dropout zeros in scRNA-seq data matrix, thus improving
the flexibility and accuracy of downstream analysis.

In this study, we propose a novel imputation method
GE-Impute based on graph embeddings. GE-Impute
first constructs a similarity matrix to learn feature
representation using graph embedding neural network
model and then predicts new links for the similarity
network based on the learning features. Indeed, previous
studies have applied similarity matrix to perform scRNA-
seq clustering such as spectral clustering [55, 56]. Those
methods rely on the similarity metrics for categorizing

individual cells and show good performance in the
clustering results, revealing the significance of similarity
matrix in scRNA-seq data analysis. Compared with the
original KNN cell similarity network, GE-Impute has
significantly improved the performance of imputation,
which indicates the advantage of the predicted new links
between connected cells with similar characteristics.
Unlike other graph-based imputation methods, GE-
Impute only imputes the dropout values and retains
the original expression characteristics as much as
possible, while other imputation cells may overcorrect
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the data such as kNN-smoothing and MAGIC. In missing
value recovering analysis, GE-Impute provides higher
Pearson correlation coefficients than the other nine
methods on both experimentally derived and computer-
simulated datasets. Through differential expression
analysis, we compared the degree of overlap between
DEGs from scRNA-seq and bulk RNA-seq. The results
demonstrate that GE-Impute performs best in identifying
DEGs in downstream analysis whether in 10x Genomics
dataset or Fluidigm C1 dataset. Moreover, GE-Impute
can significantly improve the unsupervised clustering
of cells and promote cell type annotation through
enhancing visualization of the cell type marker genes.
Finally, GE-Impute can also improve the performance of
cell trajectory analysis. During the above performance
assessment, we also note that expression smoothing-
based methods like kNN-smoothing and MAGIC often
show better expression recovering performance, but are
not very effective in delating with cell clustering tasks
since such methods do not emphasize the latent topology
of cell clusters. On the contrary, machine learning and
deep learning methods can better depict the cell cluster
topology and improve the cell clustering results, but
often show compromised performance in expression
recovering test, perhaps due to its overestimation of
cell heterogenicity and topology complexity. While the
pipeline of GE-Impute is somewhat in-between, the
overall cell–cell similarity network is reconstructed by
a sophisticated neural graph representation model,
which is conceptually similar to the methods that
depend on latent topology of cell clusters. But after
reconstruction of cell–cell similarity network, a simple
KNN-like approach was used for expression smoothing.
Therefore, it is plausible that GE-Impute takes advantage
of the traits of these two distant categories of impu-
tation methods to achieve more robust performances.
We believe future improvement of either network
embedding models or expression smoothing algorithms
is likely to further improve GE-Impute and methods
alike.

Key Points

• GE-Impute is an imputation method for scRNA-seq data
based on graph embedding.

• GE-Impute has significantly better performance on
recovering dropout zeros in both droplet- and plated-
based scRNA-seq data than other imputation methods.

• GE-Impute outperforms other imputation methods in
identifying biological differentially expressed genes and
improving the accuracy of unsupervised clustering anal-
ysis.

• GE-Impute enhances the identification and visualization
of cell type-specific marker genes.

• GE-Impute improves the performance of cell trajectory
inference.

Supplementary data
Supplementary data are available online at http://bib.ox
fordjournals.org/.
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