Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
multiomics_analysis_for_dementia [2020/02/21 13:42] – [Related work] rahelehmultiomics_analysis_for_dementia [2020/04/15 18:21] – [Related work] admin
Line 44: Line 44:
   - Satizabal, Claudia L., et al. "Genetic architecture of subcortical brain structures in over 40,000 individuals worldwide." [[https://www.biorxiv.org/content/10.1101/173831v1.full|bioRxiv]] (2017): 173831. \\  They identified a set of genes that is "significantly enriched for //Drosophila//  orthologs associated with neurodevelopmental phenotypes".   - Satizabal, Claudia L., et al. "Genetic architecture of subcortical brain structures in over 40,000 individuals worldwide." [[https://www.biorxiv.org/content/10.1101/173831v1.full|bioRxiv]] (2017): 173831. \\  They identified a set of genes that is "significantly enriched for //Drosophila//  orthologs associated with neurodevelopmental phenotypes".
   - Yamazaki, Yu., et al. "Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies." [[https://www.nature.com/articles/s41582-019-0228-7|Nat Rev Neurol ]](2019): 501–518.   - Yamazaki, Yu., et al. "Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies." [[https://www.nature.com/articles/s41582-019-0228-7|Nat Rev Neurol ]](2019): 501–518.
-  - Ferreira, Daniel., et al. '' Biological subtypes of Alzheimer disease A systematic review and meta-analysis.'' [[https://n.neurology.org/content/neurology/early/2020/02/11/WNL.0000000000009058.full.pdf|Neurology]] (2020):94:1-13.+  - Ferreira, Daniel., et al. Biological subtypes of Alzheimer diseaseA systematic review and meta-analysis [[https://n.neurology.org/content/neurology/early/2020/02/11/WNL.0000000000009058.full.pdf|Neurology]] (2020):94:1-13
 +  - Sey, Nancy YA, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. [[https://www.nature.com/articles/s41593-020-0603-0|Nature Neuroscience]], 2020.