Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
multiomics_analysis_for_dementia [2021/10/26 05:52] – [Data] adminmultiomics_analysis_for_dementia [2022/05/17 18:20] (current) – [Related work] admin
Line 47: Line 47:
  
   - An interactive **timeline**  of Alzheimer's disease by [[https://www.alzforum.org/timeline/alzheimers-disease#2010|AlzForum]].   - An interactive **timeline**  of Alzheimer's disease by [[https://www.alzforum.org/timeline/alzheimers-disease#2010|AlzForum]].
 +  - [[https://www.nia.nih.gov/research/blog/2022/05/napa-at-10?utm_source=NIA+Main&utm_campaign=3c45f80fa9-20220516_blog&utm_medium=email&utm_term=0_ffe42fdac3-3c45f80fa9-18446435|NAPA]] at 10: A decade of Alzheimer’s and related dementias research progress, 2022.
   - Satizabal, Claudia L., et al. "Genetic architecture of subcortical brain structures in 38,851 individuals." //[[https://www.nature.com/articles/s41588-019-0511-y|Nature genetics]]// 51.11 (2019): 1624-1636. \\ They identified a set of genes that is "significantly enriched for //Drosophila//  orthologs associated with neurodevelopmental phenotypes".   - Satizabal, Claudia L., et al. "Genetic architecture of subcortical brain structures in 38,851 individuals." //[[https://www.nature.com/articles/s41588-019-0511-y|Nature genetics]]// 51.11 (2019): 1624-1636. \\ They identified a set of genes that is "significantly enriched for //Drosophila//  orthologs associated with neurodevelopmental phenotypes".
   - Yamazaki, Yu., et al. "Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies." [[https://www.nature.com/articles/s41582-019-0228-7|Nat Rev Neurol ]](2019): 501–518.   - Yamazaki, Yu., et al. "Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies." [[https://www.nature.com/articles/s41582-019-0228-7|Nat Rev Neurol ]](2019): 501–518.
Line 52: Line 53:
   - Sey, Nancy YA, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. [[https://www.nature.com/articles/s41593-020-0603-0|Nature Neuroscience]], 2020.   - Sey, Nancy YA, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. [[https://www.nature.com/articles/s41593-020-0603-0|Nature Neuroscience]], 2020.
   - Borghesan, M., et al. "A **Senescence**-Centric View of Aging: Implications for Longevity and Disease." [[https://www.sciencedirect.com/science/article/abs/pii/S0962892420301434|Trends in Cell Biology]] (2020). The review paper suggested by Christi.   - Borghesan, M., et al. "A **Senescence**-Centric View of Aging: Implications for Longevity and Disease." [[https://www.sciencedirect.com/science/article/abs/pii/S0962892420301434|Trends in Cell Biology]] (2020). The review paper suggested by Christi.
-